Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 32(3): e2531, 2022 04.
Article in English | MEDLINE | ID: mdl-35019181

ABSTRACT

Conventional conservation policies in Europe notably rely on the passive restoration of natural forest dynamics by setting aside forest areas to preserve forest biodiversity. However, since forest reserves cover only a small proportion of the territory, conservation policies also require complementary conservation efforts in managed forests in order to achieve the biodiversity targets set up in the Convention on Biological Diversity. Conservation measures also raise the question of large herbivore management in and around set-asides, particularly regarding their impact on understory vegetation. Although many studies have separately analyzed the effects of forest management, management abandonment, and ungulate pressure on forest biodiversity, their joint effects have rarely been studied in a correlative framework. We studied 212 plots located in 15 strict forest reserves paired with adjacent managed forests in European France. We applied structural equation models to test the effects of management abandonment, stand structure, and ungulate pressure on the abundance, species richness, and diversity of herbaceous vascular plants and terricolous bryophytes. We showed that stand structure indices and plot-level browsing pressure had direct and opposite effects on herbaceous vascular plant species diversity; these effects were linked with the light tolerance of the different species groups. Increasing canopy cover had an overall negative effect on herbaceous vascular plant abundance and species diversity. The effect was two to three times greater in magnitude than the positive effects of browsing pressure on herbaceous plants diversity. On the other hand, a high stand density index had a positive effect on the species richness and diversity of bryophytes, while browsing had no effect. Forest management abandonment had few direct effects on understory plant communities, and mainly indirectly affected herbaceous vascular plant and bryophyte abundance and species richness and diversity through changes in vertical stand structure. Our results show that conservation biologists should rely on foresters and hunters to lead the preservation of understory vegetation communities in managed forests since, respectively, they manipulate stand structure and regulate ungulate pressure. Their management actions should be adapted to the taxa at stake, since bryophytes and vascular plants respond differently to stand and ungulate factors.


Subject(s)
Forests , Tracheophyta , Biodiversity , Ecosystem , Herbivory , Plants , Trees
2.
Glob Chang Biol ; 24(6): e741-e742, 2018 06.
Article in English | MEDLINE | ID: mdl-29526050

ABSTRACT

In Boulanger et al. (2018), we investigated the effects of ungulates on forest plant diversity. By suggesting a revisit of our conclusions regarding ecosystem dynamics since the late Pleistocene, Fløjgaard et al. (2018) came to the conclusion that moderate grazing in forest should be a conservation target. Since major points of our paper were mis- or over- interpreted, we put the record straight on our study system and on the scope of our conclusions. Finally, we advocate for an assessment of the conservation issues of ungulates in forests not only regarding hypothetical and still debated states of past ecosystems but also considering timely challenges for forest ecosystems.


Subject(s)
Ecosystem , Forests , Animals , Mammals , Plants , Trees
3.
Glob Chang Biol ; 24(2): e485-e495, 2018 02.
Article in English | MEDLINE | ID: mdl-28892277

ABSTRACT

Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant-plant interactions and through soil disturbance. In forest ecosystems, researchers' attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation-wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light-demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non-forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape-level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.


Subject(s)
Biodiversity , Forests , Plants/classification , Animals , Deer/physiology , France , Herbivory , Population Density , Soil , Sus scrofa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...