Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mon Not R Astron Soc ; 505(2): 1678-1698, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34099958

ABSTRACT

We study the time evolution of molecular clouds across three Milky Way-like isolated disc galaxy simulations at a temporal resolution of 1 Myr and at a range of spatial resolutions spanning two orders of magnitude in spatial scale from ∼10 pc up to ∼1 kpc. The cloud evolution networks generated at the highest spatial resolution contain a cumulative total of ∼80 000 separate molecular clouds in different galactic-dynamical environments. We find that clouds undergo mergers at a rate proportional to the crossing time between their centroids, but that their physical properties are largely insensitive to these interactions. Below the gas-disc scale height, the cloud lifetime τlife obeys a scaling relation of the form τlife∝ℓ-0.3 with the cloud size ℓ, consistent with over-densities that collapse, form stars, and are dispersed by stellar feedback. Above the disc scale height, these self-gravitating regions are no longer resolved, so the scaling relation flattens to a constant value of ∼13 Myr, consistent with the turbulent crossing time of the gas disc, as observed in nearby disc galaxies.

3.
Nature ; 586(7830): 528-532, 2020 10.
Article in English | MEDLINE | ID: mdl-33087913

ABSTRACT

Planet formation is generally described in terms of a system containing the host star and a protoplanetary disk1-3, of which the internal properties (for example, mass and metallicity) determine the properties of the resulting planetary system4. However, (proto)planetary systems are predicted5,6 and observed7,8 to be affected by the spatially clustered stellar formation environment, through either dynamical star-star interactions or external photoevaporation by nearby massive stars9. It is challenging to quantify how the architecture of planetary sysems is affected by these environmental processes, because stellar groups spatially disperse within less than a billion years10, well below the ages of most known exoplanets. Here we identify old, co-moving stellar groups around exoplanet host stars in the astrometric data from the Gaia satellite11,12 and demonstrate that the architecture of planetary systems exhibits a strong dependence on local stellar clustering in position-velocity phase space. After controlling for host stellar age, mass, metallicity and distance from the star, we obtain highly significant differences (with p values of 10-5 to 10-2) in planetary system properties between phase space overdensities (composed of a greater number of co-moving stars than unstructured space) and the field. The median semi-major axis and orbital period of planets in phase space overdensities are 0.087 astronomical units and 9.6 days, respectively, compared to 0.81 astronomical units and 154 days, respectively, for planets around field stars. 'Hot Jupiters' (massive, short-period exoplanets) predominantly exist in stellar phase space overdensities, strongly suggesting that their extreme orbits originate from environmental perturbations rather than internal migration13,14 or planet-planet scattering15,16. Our findings reveal that stellar clustering is a key factor setting the architectures of planetary systems.

4.
Space Sci Rev ; 216(4): 50, 2020.
Article in English | MEDLINE | ID: mdl-32377024

ABSTRACT

Giant molecular clouds (GMCs) and their stellar offspring are the building blocks of galaxies. The physical characteristics of GMCs and their evolution are tightly connected to galaxy evolution. The macroscopic properties of the interstellar medium propagate into the properties of GMCs condensing out of it, with correlations between e.g. the galactic and GMC scale gas pressures, surface densities and volume densities. That way, the galactic environment sets the initial conditions for star formation within GMCs. After the onset of massive star formation, stellar feedback from e.g. photoionisation, stellar winds, and supernovae eventually contributes to dispersing the parent cloud, depositing energy, momentum and metals into the surrounding medium, thereby changing the properties of galaxies. This cycling of matter between gas and stars, governed by star formation and feedback, is therefore a major driver of galaxy evolution. Much of the recent debate has focused on the durations of the various evolutionary phases that constitute this cycle in galaxies, and what these can teach us about the physical mechanisms driving the cycle. We review results from observational, theoretical, and numerical work to build a dynamical picture of the evolutionary lifecycle of GMC evolution, star formation, and feedback in galaxies.

5.
Nature ; 569(7757): 519-522, 2019 05.
Article in English | MEDLINE | ID: mdl-31118525

ABSTRACT

The physics of star formation and the deposition of mass, momentum and energy into the interstellar medium by massive stars ('feedback') are the main uncertainties in modern cosmological simulations of galaxy formation and evolution1,2. These processes determine the properties of galaxies3,4 but are poorly understood on the scale of individual giant molecular clouds (less than 100 parsecs)5,6, which are resolved in modern galaxy formation simulations7,8. The key question is why the timescale for depleting molecular gas through star formation in galaxies (about 2 billion years)9,10 exceeds the cloud dynamical timescale by two orders of magnitude11. Either most of a cloud's mass is converted into stars over many dynamical times12 or only a small fraction turns into stars before the cloud is dispersed on a dynamical timescale13,14. Here we report high-angular-resolution observations of the nearby flocculent spiral galaxy NGC 300. We find that the molecular gas and high-mass star formation on the scale of giant molecular clouds are spatially decorrelated, in contrast to their tight correlation on galactic scales5. We demonstrate that this decorrelation implies rapid evolutionary cycling between clouds, star formation and feedback. We apply a statistical method15,16 to quantify the evolutionary timeline and find that star formation is regulated by efficient stellar feedback, which drives cloud dispersal on short timescales (around 1.5 million years). The rapid feedback arises from radiation and stellar winds, before supernova explosions can occur. This feedback limits cloud lifetimes to about one dynamical timescale (about 10 million years), with integrated star formation efficiencies of only 2 to 3 per cent. Our findings reveal that galaxies consist of building blocks undergoing vigorous, feedback-driven life cycles that vary with the galactic environment and collectively define how galaxies form stars.

SELECTION OF CITATIONS
SEARCH DETAIL
...