Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(26): 14377-14388, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540747

ABSTRACT

The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques.

2.
Soft Matter ; 13(24): 4393-4400, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28581001

ABSTRACT

Our group recently introduced a new process to synthesize nanoparticle shells of about 100 nm, named "hybridosomes®". Here, the structure and mechanical properties of hybridosomes® made from iron oxide nanoparticles and poly(acrylic acid) are characterized using TEM, AFM and an osmotic compression technique. For the latter, the size distribution of the hybridosomes is monitored by nanoparticle tracking analysis (NTA) in the presence of poly(ethylene glycol)s of different molecular weights. It is found that the size of the hybridosomes® can be tuned from ca. 80 nm to over 110 nm by adjusting the amount of nanoparticles and that their shell consists of a single layer of nanoparticles, with a porous structure. The size of the pores is estimated from osmotic compression experiments at ca. 4000 g mol-1. The mechanical properties are measured both at the ensemble level using size measurements under osmotic pressure and at the single nanoparticle level by atomic force microscopy nanoindentation. Both osmotic and AFM experiments are analyzed in the framework of the continuum elastic theory of thin shells and yield a value of Young's modulus of the order of MPa.

3.
Biochemistry ; 42(51): 15342-51, 2003 Dec 30.
Article in English | MEDLINE | ID: mdl-14690444

ABSTRACT

The interaction of cytochrome c with micelles of sodium dodecyl sulfate was studied by proton NMR spectroscopy. The protein/micelles ratio was found to be crucial in controlling the extent of the conformational changes in the heme crevice. Over a range of ratios between 1:30 and 1:60, the NMR spectra of the ferric form display no paramagnetic signals due to a moderately fast exchange between intermediate species on the NMR time scale. This is consistent with an interconversion of bis-histidine derivatives (His18-Fe-His26 and His18-Fe-His33). Further addition of micelles induces a high-spin species that is proposed to involve pentacoordinated iron. The resulting free binding site, also encountered in the ferrous form, is used to complex exogenous ligands such as cyanide or carbon monoxide. Attribution of the heme methyls was performed by means of exchange spectroscopy through ligand exchange or electron transfer. The heme methyl shift pattern of the micellar cyanocytochrome in the ferric low spin form is different from the pattern of both the native and the cyanide cytochrome c adduct, in the absence of micelles, reflecting a complete change of the heme electronic structure. Analysis of the electron self-exchange reaction between the two redox states of the micellar cyanocytochrome c yields a rate constant of 2.4 x 10(4) M(-1) s(-1) at 298 K, which is surprisingly close to the value observed in the native protein.


Subject(s)
Cytochromes c/chemistry , Micelles , Animals , Electron Transport , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Heme/chemistry , Horses , Ligands , Nuclear Magnetic Resonance, Biomolecular/methods , Oxidation-Reduction , Protons , Sodium Dodecyl Sulfate/chemistry , Spectrophotometry, Ultraviolet , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...