Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12489, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38821966

ABSTRACT

The close link between intestinal microbiota and bone health ('gut-bone' axis) has recently been revealed: the modulation of the amount and nature of bacteria present in the intestinal tract has an impact on bone health and calcium (Ca) metabolism. Probiotics are known to favorably impact the intestinal microbiota. The objective of this study was to investigate the effect of Pediococcus acidilactici CNCM I-4622 (PA) on laying performance, egg/eggshell quality, Ca metabolism and bone mineralization and resistance in relatively old layers (50 wks old at the beginning of the experiment) during 14 weeks. 480 Hy Line brown layers were divided into 2 groups (CON and PA: 3 layers/rep, 80 rep/group) and fed with a diet formulated to be suboptimal in calcium (Ca) and phosphorus (P) (- 10% of the requirements). The total egg weight was improved by 1.1% overall with PA, related to an improvement of the weight of marketable eggs (+ 0.9%). PA induced a decreased % of downgraded eggs, mainly broken eggs (- 0.4 pts) and FCR improvement (- 0.8% for all eggs, - 0.9% for marketable eggs). PA also led to higher Haugh units (HU: + 7.4%). PA tended to decrease crypt depth after the 14 weeks of supplementation period in the jejunum (- 25.2%) and ileum (- 17.6%). As a consequence, the VH/CD ratio appeared increased by PA at the end of the trial in the jejunum (+ 63.0%) and ileum (+ 48.0%). Ca and P retention were increased by 4 pts following PA supplementation, translating into increased bone hardness (+ 19%), bone cohesiveness (+ 43%) and bone Ca & P (+ 1 pt) for PA-supplemented layers. Blood Ca and P were respectively improved by 5% and 12% with PA. In addition, blood calcitriol and osteocalcin concentrations were respectively improved by + 83% and + 3% in PA group at the end of the trial, compared to CON group. There was no difference between the 2 groups for ALP (alkaline phosphatase) and PTH (parathyroid hormone). PA significantly decreased the expression of the following genes: occludin in the small intestine, calbindin 1 in the ovarian tissue and actin B in the bone. PA therefore improved zootechnical performance of these relatively old layers, and egg quality. The parallel increase in Ca and P in the blood and in the bone following PA supplementation suggests an improvement of the mineral supply for eggshell formation without impacting bone integrity, and even increasing bone resistance.


Subject(s)
Calcium , Chickens , Dietary Supplements , Pediococcus acidilactici , Phosphorus , Probiotics , Animals , Probiotics/administration & dosage , Pediococcus acidilactici/metabolism , Phosphorus/metabolism , Calcium/metabolism , Female , Animal Feed , Eggs , Oviposition/drug effects , Gastrointestinal Microbiome
2.
Microbiol Spectr ; 12(4): e0426323, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376365

ABSTRACT

Recycled manure solids (RMS) is used as bedding material in cow housing but can be at risk for pathogens development. Cows spend several hours per day lying down, contributing to the transfer of potential mastitis pathogens from the bedding to the udder. The effect of a bacterial conditioner (Manure Pro, MP) application was studied on RMS-bedding and milk qualities and on animal health. MP product was applied on bedding once a week for 3 months. Bedding and teat skin samples were collected from Control and MP groups at D01, D51, and D90 and analyzed through 16S rRNA amplicon sequencing. MP application modified bacterial profiles and diversity. Control bedding was significantly associated with potential mastitis pathogens, while no taxa of potential health risk were significantly detected in MP beddings. Functional prediction identified enrichment of metabolic pathways of agronomic interest in MP beddings. Significant associations with potential mastitis pathogens were mainly observed in Control teat skin samples. Finally, significantly better hygiene and lower Somatic Cell Counts in milk were observed for cows from MP group, while no group impact was observed on milk quality and microbiota. No dissemination of MP strains was observed from bedding to teats or milk. IMPORTANCE: The use of Manure Pro (MP) conditioner improved recycled manure solids-bedding quality and this higher sanitary condition had further impacts on dairy cows' health with less potential mastitis pathogens significantly associated with bedding and teat skin samples of animals from MP group. The animals also presented an improved inflammation status, while milk quality was not modified. The use of MP conditioner on bedding may be of interest in controlling the risk of mastitis onset for dairy cows and further associated costs.


Subject(s)
Manure , Mastitis , Female , Cattle , Animals , Humans , Manure/microbiology , RNA, Ribosomal, 16S/genetics , Housing, Animal , Bacteria/genetics , Bedding and Linens
3.
Probiotics Antimicrob Proteins ; 16(1): 249-258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36630002

ABSTRACT

A total of 150 21-day-old weaned piglets [(Yorkshire × Landrace) × Duroc] were randomly assigned to 3 groups (CON, TRT1, TRT2) to evaluate the effects of dietary supplementation of probiotic, paraprobiotic, and hydrolyzed yeast mixture (PPY) on growth performance, nutrient digestibility, fecal bacterial counts, fecal calprotectin contents, and diarrhea rate in a 42-day experiment (phase 1: days 1-14; phase 2: days 15-42). There were 10 replicate pens per treatment with 5 pigs per pen (three gilts and two barrows). Pigs in CON were only provided with a basal diet. Pigs in TRT1 were provided with a basal diet + 3000 mg/kg zinc oxide during phase 1 and a basal diet during phase 2. Pigs in TRT2 were provided with a basal diet + 200 mg/kg probiotic (Saccharomyces cerevisiae boulardii) + 800 mg/kg paraprobiotic (inactivated yeast strains of Saccharomyces cerevisiae and Cyberlindnera jadinii) + 10 g/kg hydrolyzed yeast mixture during phase 1, and a basal diet + 100 mg/kg probiotic + 400 mg/kg paraprobiotic mixture during phase 2. Pigs in TRT1 and TRT2 were significantly heavier at day 14 and 42 than CON pigs. Growth rate during days 1-14, 15-42, and 1-42 and feed efficiency during days 1-14 were similarly affected by treatment while feed efficiency was significantly higher for TRT2 pigs between 15-42 and 1-42 days. Moreover, nitrogen and energy digestibility in both TRT1 and TRT2 were higher than that in CON. During experimental periods, diarrhea rate in TRT1 and TRT2 was lower than that in CON. Therefore, we demonstrated that PPY supplementation had comparable effects as ZnO in improving growth performance and nutrient digestibility as well as ameliorating post-weaning diarrhea in weaned piglets.


Subject(s)
Probiotics , Zinc Oxide , Animals , Swine , Female , Saccharomyces cerevisiae , Zinc Oxide/pharmacology , Dietary Supplements , Diarrhea/microbiology , Diet , Animal Feed/analysis
4.
Front Microbiol ; 14: 1253588, 2023.
Article in English | MEDLINE | ID: mdl-37901805

ABSTRACT

Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.

5.
Microorganisms ; 11(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36985246

ABSTRACT

The supplementation of animal feed with microbial additives remains questioning for the traditional or quality label raw milk cheeses with regard to microbial transfer to milk. We evaluated the effect of dietary administration of live yeast on performance and microbiota of raw milk, teat skin, and bedding material of dairy cows. Two balanced groups of cows (21 primiparous 114 ± 24 DIM, 18 multiparous 115 ± 33 DIM) received either a concentrate supplemented with Saccharomyces cerevisiae CNCM I-1077 (1 × 1010 CFU/d) during four months (LY group) or no live yeast (C group). The microbiota in individual milk samples, teat skins, and bedding material were analysed using culture dependent techniques and high-throughput amplicon sequencing. The live yeast supplementation showed a numerical increase on body weight over the experiment and there was a tendency for higher milk yield for LY group. A sequence with 100% identity to that of the live yeast was sporadically found in fungal amplicon datasets of teat skin and bedding material but never detected in milk samples. The bedding material and teat skin from LY group presented a higher abundance of Pichia kudriavzevii reaching 53% (p < 0.05) and 10% (p < 0.05) respectively. A significant proportion of bacterial and fungal ASVs shared between the teat skin and the milk of the corresponding individual was highlighted.

6.
Transl Anim Sci ; 6(4): txac144, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36425846

ABSTRACT

This study evaluated the effects of novel silage inoculants containing lactic acid bacteria (LAB) and fibrolytic enzymes on ensiling, aerobic stability (AS), and the performance of growing beef cattle. Whole-plant corn forage was either uninoculated (CON) or inoculated with a mixture of LAB containing (cfu g-1 fresh forage) 1.5 × 105 L. hilgardii (CNCM I-4785), 1.5 × 105 L. buchneri (NCIMB 40788) and 1.0 × 105 P. pentosaceus (NCIMB 12455) for a total of 4.0 × 105 cfu g-1 fresh forage LAB (IB), or a combination of IB plus fibrolytic enzymes (xylanase + ß-glucanase) (IC). All treatments were ensiled in mini-silos, whereas CON and IC were also ensiled in silo bags for the growth performance study. Total bacteria (TB) counts were lower (P = 0.02) for IC than CON after 14 d of ensiling, whereas TB counts of IC and IB were greater (P ≤ 0.01) than CON after 60 d of ensiling in mini-silos. The LAB in IC and IB ensiled in mini-silos were greater than CON on d 60 (P ≤ 0.01) and 90 (P ≤ 0.001) of ensiling and after 3 d (P ≤ 0.01) of aerobic exposure (AE). Silage pH of IC ensiled in silo bags was lower than CON on d 3 (P < 0.01), 7 (P < 0.001), and 14 (P = 0.02) of AE. Yeast counts were lower for IC than CON in terminal silage (P < 0.001), and after 3 (P < 0.001) and 7 d (P < 0.01) of AE. Acetate (AC) concentrations were higher (P ≤ 0.02) for IC than CON throughout AE, whereas lactate (LA) concentrations of IC were greater than CON on d 3 (P < 0.001), 7 (P < 0.01), and 14 (P < 0.001) of AE. Greater AC concentration and lower yeast counts resulted in greater (P < 0.001) stability for IC ensiled in silo bags than CON after 14 d of AE. Growth performance of steers was similar (P > 0.05) as the nutrient composition of silage was similar across diets. Improved AS of IC could potentially have a greater impact on DMI, production efficiency, and growth performance in large-scale commercial feedlot operations where silage at the silo face may be exposed to air for longer periods of time.

7.
Animals (Basel) ; 12(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36230255

ABSTRACT

The aim of this study was to assess the effect that feeding Saccharomyces cerevisiae boulardii CNCM I-1079 (LSB) to lactating sows and their progeny has on inflammatory response and mucosal immunity after vaccination against Actinobacillus pleuropneumoniae. Sixty-seven Danbred sows were allotted into two treatments when they entered the farrowing room seven days before the expected farrowing date: control (CON: lactation diet) and LSB (CON + 12 × 109 colony forming units (CFU)/d until weaning). At weaning, piglets were equally allotted into two experimental diets according to sow diet: control (CON: 2-phase post-weaning diets) and LSB (CON + 2 × 109 CFU/kg and 1 × 109 CFU/kg in phases 1 and 2, respectively). The piglets were vaccinated at days 26 and 49 post-weaning. Growth performance and number of IgA producing cells and cytokine's gene expression in lung, lymph node, and intestine samples at day 70 post-weaning were assessed and analyzed in SPSS Statistics 26: performance with a general linear model with sex, room, sow diet, piglet diet, and their interactions as main effects, and immunity with a Kruskal−Wallis test for k unrelated samples. Piglets from LSB-fed sows displayed a higher average daily gain (ADG; p < 0.01) and a heavier body weight (BW; p < 0.05) during lactation, tended (p < 0.1) to be heavier at day 49, and to have a higher ADG between days 26 and 49; had fewer number of IgA producing cells in the lymph node (p < 0.05); and all the cytokines studied were significantly under-regulated (p < 0.05) in the lung. It is concluded that feeding Saccharomyces cerevisiae boulardii CNCM I-1079 to sows improved piglet performance during lactation and showed a clear reduction in the inflammatory status of the lungs after vaccination against A. pleuropneumoniae, suggesting that there was a maternal imprinting effect on mucosal protection and a cross-talk between the gut microbiota and the lung.

8.
Microorganisms ; 9(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576794

ABSTRACT

Mature and stable intestinal microbiota in chickens is essential for health and production. Slow development of microbiota in young chickens prolongs the precarious period before reaching mature configuration. Whether probiotics can play a role in the early maturation of intestinal microbiota is unknown. To address this, day-old chicks were assigned into six groups: NC (basal diet), PC (virginiamycin), low (BPL) and high-dose (BPH) of Bacillus pumilus, and low (BSL) and high-dose (BSH) of Bacillus subtilis. Cecal contents at days 7, 14, 28 and 42 were used to analyze the treatment and time effects on the diversity and composition of microbiota. Overall, the alpha diversity was significantly decreased in the NC group between days 7 and 14, while this decline was prevented in the Bacillus subtilis probiotic (BSL and BSH) and even reversed in the BPH group. The beta-diversity showed significant responses of microbial communities to probiotics in first two weeks of life. Analyses of the abundance of microbiota reflected that members of the family Ruminococcaceae (Ruminnococcus, Oscillospira, Faecalibacterium, Butyricicoccus, and Subdoligranulum), which were dominant in mature microbiota, were significantly higher in abundance at day 14 in the probiotic groups. Conversely, the abundance of genera within the family Lachnospiraceae (Ruminococcus, Blautia, and Coprococcus) was dominant in early dynamic microbiota but was significantly lower in the probiotic groups at day 14. The Lactobacillus and Bifidobacterium abundance was higher, while the Enterobacteriaceae abundance was lower in the probiotic groups. In summary, the probiotics efficiently helped the cecal microbiota reach mature configuration earlier in life. These results could be used for the future manipulation of microbiota from the perspective of improving poultry performance.

9.
J Anim Sci ; 99(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34453166

ABSTRACT

The objective of this experiment was to determine if statistical process control (SPC) procedures coupled with remote continuous data collection could accurately differentiate between animals experimentally inoculated with a viral-bacterial (VB) challenge or phosphate buffer solution (PBS). Crossbred heifers (N = 38; BW = 230 ± 16.4 kg) were randomly assigned to treatments by initial weight, average daily gain (ADG), bovine herpes virus 1, and Mannheimia haemolytica serum titers. Feeding behavior, dry matter intake (DMI), animal activity, and rumen temperature were continuously monitored remotely prior to and following VB challenge. VB-challenged heifers exhibited decreased (P < 0.01) ADG and DMI, as well as increased (P < 0.01) neutrophils and rumen temperature consistent with a bovine respiratory disease (BRD) infection. However, none of the heifers displayed overt clinical signs of disease. Shewhart and cumulative summation (CUSUM) charts were evaluated, with sensitivity and specificity computed on the VB-challenged heifers (n = 19) and PBS-challenged heifers (n = 19), respectively, and the accuracy was determined as the average of sensitivity and specificity. To address the diurnal nature of rumen temperature responses, summary statistics (mean, minimum, and maximum) were computed for daily quartiles (6-h intervals), and these quartile temperature models were evaluated separately. In the Shewhart analysis, DMI was the most accurate (95%) at deciphering between PBS- and VB-challenged heifers, followed by rumen temperature (94%) collected in the 2nd and 3rd quartiles. Rest was most the accurate accelerometer-based traits (89%), and meal duration (87%) and bunk visit (BV) frequency (82%) were the most accurate feeding behavior traits. Rumen temperature collected in the 3rd quartile signaled the earliest (2.5 d) of all the variables monitored with the Shewhart, followed by BV frequency (2.8 d), meal duration (2.8 d), DMI (3.0 d), and rest (4.0 d). Rumen temperature and DMI remained the most accurate variables in the CUSUM at 80% and 79%, respectively. Meal duration (58%), BV frequency (71%), and rest (74%) were less accurate when monitored with the CUSUM analysis. Furthermore, signal day was greater for DMI, rumen temperature, and meal duration (4.4, 5.0, and 3.7 d, respectively) in the CUSUM compared to Shewhart analysis. These results indicate that Shewhart and CUSUM charts can effectively identify deviations in feeding behavior, activity, and rumen temperature patterns for the purpose of detecting sub-clinical BRD in beef cattle.


Subject(s)
Animal Feed , Mannheimia haemolytica , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Feeding Behavior , Female , Rumen
10.
J Sci Food Agric ; 101(15): 6220-6227, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33913172

ABSTRACT

BACKGROUND: The effect of live yeast Saccharomyces cerevisiae strain CNCM I-1077 (SC) on the ruminal degradability of different forages commonly found in dairy diets in South America was evaluated. We also assessed if SC supplementation interacts with forage group to affect ruminal fiber degradability. Four non-lactating rumen-cannulated Holstein cows were randomly assigned to two treatment sequences: Control-SC-Control or SC-Control-SC, in a switchback design, with three 30-day periods. Cows in the SC treatment were supplied with 1 × 1010 colony-forming units of yeast daily via rumen cannula. In situ degradability of dry matter (DM) and neutral detergent fiber (aNDF) was measured in 15 forages collected in South America. Forages were assigned to one of three groups: corn silages; tropical grasses (sugarcane silages and tropical grass silages); and temperate grasses and alfalfa (oat silages, ryegrass silages, alfalfa silage, and alfalfa hay). RESULTS: Cows supplemented with SC had higher (P = 0.05) counts of yeasts and lower (P = 0.03) concentration of lactate in rumen fluid. There was no interaction between forage group and yeast supplementation (P > 0.10) on in situ degradability. The SC increased DM (by 4.6%) and aNDF degradation (by 10.3%) at 24 h of incubation (P < 0.05). Metabolomics revealed that a chemical entity (C17 H29 N6 O3 , m/z 365.2284 [M + H]+ ) from the family of lipids and related molecules was suppressed in the rumen fluid of cows supplemented with SC. CONCLUSION: The SC supplementation improved DM and aNDF degradability regardless of the forage group. © 2021 Society of Chemical Industry.


Subject(s)
Cattle/metabolism , Dietary Fiber/metabolism , Probiotics/administration & dosage , Rumen/metabolism , Saccharomyces cerevisiae/metabolism , Animal Feed/analysis , Animals , Cattle/microbiology , Dietary Supplements/analysis , Fermentation , Medicago sativa/metabolism , Poaceae/metabolism , Rumen/microbiology , Saccharum/metabolism , Silage/analysis , Zea mays/metabolism
11.
Poult Sci ; 100(3): 100871, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33516480

ABSTRACT

Probiotics are being developed as alternatives to antibiotic growth promoters. The aim of the study was to investigate the effects of 2 novel strains of Bacillus pumilus and Bacillus subtilis on production, intestinal microbiota, gut health, and immunity of broilers raised under suboptimal conditions. Day-old chicks (Cobb 500, n = 2,073) were randomly assigned into 6 groups: Con group (group fed with basal diet), Ab group (group treated with virginiamycin), groups treated with 2 levels of B. pumilus (low dose: 3 × 108 cfu/kg of feed [BPL] and high dose: 1 × 109 cfu/kg [BPH]), and groups treated with 2 levels of B. subtilis (low dose: 3 × 108 cfu/kg [BSL] and high dose: 1 × 109 cfu/kg [BSH]). Production parameters were recorded weekly. Cecal tonsils and content as well as ileum samples were collected on day 14 and day 42. Cecal tonsils were used to sort T-regulatory cells (CD4+CD8-CD25+ and CD4+CD8+CD25+) to study expression of IL-10 and interferon gamma, whereas cecal content was used for bacterial culture. Ileum samples were used to measure gene expression of tight junction proteins, mucin, and cytokines. BW and feed intake increased in the Ab, BPL, BSL, and BSH groups compared with the Con group between day 35 and day 42. The CD4+CD8-CD25+ cells expressed high levels of IL-10 in the BSH group on day 14 and in the BPL, BSL, and BSH groups on day 42 and high levels of interferon gamma in the BPL, BSL, and BSH groups on day 14 and in the BSL and BSH groups on day 42. The expression of IL-10 and interferon gamma in CD4+CD8+CD25+ cells was higher only in the BSH group on day 14 and day 42. Cecal bacterial populations of genera, Lactobacillus (day 14 and day 42) and Clostridium (day 14), were higher in the BSH group. Expression of tight junction protein increased significantly in the ileum on day 14 in the BPL (occludin, zona occludens 1 [ZO-1]), BSL (occludin, ZO-1), and BSH (occludin, ZO-1, junctional adhesion molecule 2 [JAM-2]) groups compared with that in the Con group and declined in all groups except in the BSH group (occludin, ZO-1, JAM-2) on day 42. Expression of MUC2 and IL-17F increased in all groups on day 14 and remained high on day 42 in the BSL and BSH groups. Taken together, both Bacillus probiotics altered the intestinal and immune activities, particularly on day 14, suggesting beneficial influence of probiotics.


Subject(s)
Bacillus pumilus , Bacillus subtilis , Chickens , Gastrointestinal Microbiome , Probiotics , Animals , Bacillus pumilus/physiology , Bacillus subtilis/physiology , Chickens/growth & development , Chickens/immunology , Chickens/microbiology , Diet/veterinary , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Random Allocation
12.
J Anim Sci ; 98(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32820800

ABSTRACT

This study evaluated the effects of inoculation of whole crop corn silage with a mixture of heterofermentative lactic acid bacteria (LAB) composed of Lactobacillus hilgardii and Lactobacillus buchneri on ensiling, aerobic stability, ruminal fermentation, total tract nutrient digestibility, and growth performance of beef cattle. Uninoculated control corn silage (CON) and silage inoculated with 3.0 × 105 cfu g-1 of LAB containing 1.5 × 105 cfu g-1 of L. hilgardii CNCM I-4785 and 1.5 × 105 cfu g-1 of L. buchneri NCIMB 40788 (INOC) were ensiled in silo bags. The pH did not differ (P > 0.05) between the two silages during ensiling but was greater (P < 0.001) for CON than INOC after 14 d of aerobic exposure (AE). Neutral detergent insoluble crude protein (NDICP) content (% of DM and % of CP basis) of terminal INOC silage was greater (P ≤ 0.05) than that of CON. In terminal silage, concentrations of total VFA and acetate were greater (P < 0.001), while water-soluble carbohydrates were lower (P < 0.001) for INOC than CON. Yeast and mold counts were lower for INOC than CON (P ≤ 0.001) in both terminal and aerobically exposed silages. The stability of INOC was greater (P < 0.001) than that of CON after 14 d of AE. Ruminal fermentation parameters and DMI did not differ (P > 0.05) between heifers fed the two silages, while there was a tendency (P ≤ 0.07) for lower CP and starch digestibility for heifers fed INOC than CON. Total nitrogen (N) intake and N retention were lower (P ≤ 0.04) for heifers fed INOC than CON. Dry matter intake as a percentage of BW was lower (P < 0.04) and there was a tendency for improved feed efficieny (G:F; P = 0.07) in steers fed INOC vs. CON silage. The NEm and NEg contents were greater for INOC than CON diets. Results indicate that inoculation with a mixture of L. hilgardii and L. buchneri improved the aerobic stability of corn silage. Improvements in G:F of growing steers fed INOC silage even though the total tract digestibility of CP and starch tended to be lower for heifers fed INOC are likely because the difference in BW and growth requirements of these animals impacted the growth performance and nutrient utilization and a greater proportion of NDICP in INOC than CON.


Subject(s)
Cattle/growth & development , Lactobacillus/physiology , Silage/analysis , Zea mays/microbiology , Animals , Cattle/metabolism , Female , Fermentation , Fungi/growth & development , Nutrients/metabolism , Rumen/metabolism , Saccharomyces cerevisiae/growth & development , Silage/microbiology , Silage/standards
13.
ISME J ; 14(9): 2223-2235, 2020 09.
Article in English | MEDLINE | ID: mdl-32444812

ABSTRACT

Perturbations in early life gut microbiota can have long-term impacts on host health. In this study, we investigated antimicrobial-induced temporal changes in diversity, stability, and compositions of gut microbiota in neonatal veal calves, with the objective of identifying microbial markers that predict diarrhea. A total of 220 samples from 63 calves in first 8 weeks of life were used in this study. The results suggest that increase in diversity and stability of gut microbiota over time was a feature of "healthy" (non-diarrheic) calves during early life. Therapeutic antimicrobials delayed the temporal development of diversity and taxa-function robustness (a measure of microbial stability). In addition, predicted genes associated with beta lactam and cationic antimicrobial peptide resistance were more abundant in gut microbiota of calves treated with therapeutic antimicrobials. Random forest machine learning algorithm revealed that Trueperella, Streptococcus, Dorea, uncultured Lachnospiraceae, Ruminococcus 2, and Erysipelatoclostridium may be key microbial markers that can differentiate "healthy" and "unhealthy" (diarrheic) gut microbiota, as they predicted early life diarrhea with an accuracy of 84.3%. Our findings suggest that diarrhea in veal calves may be predicted by the shift in early life gut microbiota, which may provide an opportunity for early intervention (e.g., prebiotics or probiotics) to improve calf health with reduced usage of antimicrobials.


Subject(s)
Cattle Diseases , Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Diarrhea/veterinary , Feces
14.
J Anim Sci ; 98(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31930309

ABSTRACT

The objective of this experiment was to determine if statistical process control (SPC) procedures coupled with the remote continuous collection of feeding behavior patterns, accelerometer-based behaviors, and rumen temperature can accurately differentiate between animals experimentally inoculated with Mannheimia haemolytica (MH) or PBS. Thirty-six crossbred steers (BW = 352 ± 23 kg) seronegative for MH were randomly assigned to bronchoselective endoscopic inoculation with MH (n = 18) or PBS (n = 18). Electronic feed bunks were used to measure DMI and feeding behavior traits, accelerometer-based neck collars measured feeding- and activity-behavior traits, and ruminal thermo-boluses measured rumen temperature. Data were collected for 28 d prior to and following inoculation. Steers inoculated with MH exhibited elevated (P < 0.02) levels of neutrophils and rumen temperature indicating that MH challenge effectively stimulated immunologic responses. However, only nine of the MH steers exhibited increased serum haptoglobin concentrations indicative of an acute-phase protein response and one displayed clinical signs of disease. Shewhart charts (SPC procedure) were used for two analyses, and sensitivity was computed using all MH-challenged steers (n = 18), and a subset that included only MH-challenged haptoglobin-responsive steers (n = 9). Specificity was calculated using all PBS steers in both analyses. In the haptoglobin-responsive only analysis, DMI and bunk visit (BV) duration had the greatest accuracy (89%), with accuracies for head-down (HD) duration, BV frequency, time to bunk, and eating rate being less (83%, 69%, 53%, and 61%, respectively). To address the diurnal nature of rumen temperature, data were averaged over 6-h intervals, and quarterly temperature models were evaluated separately. Accuracy for the fourth quarter rumen temperature was higher (78%) than the other quarterly temperature periods (first = 56%, second = 50%, and third = 67%). In general, the accelerometer-based behavior traits were highly specific ranging from 82% for ingestion to 100% for rest, rumination, and standing. However, the sensitivity of these traits was low (0% to 50%), such that the accuracies were moderate compared with feeding behavior and rumen temperature response variables. These results indicate that Shewhart procedures can effectively identify deviations in feeding behavior and rumen temperature patterns to enable subclinical detection of BRD in beef cattle.


Subject(s)
Bovine Respiratory Disease Complex/diagnosis , Feeding Behavior , Haptoglobins/analysis , Mannheimia haemolytica/physiology , Accelerometry , Animal Feed/analysis , Animals , Bovine Respiratory Disease Complex/microbiology , Cattle , Diet/veterinary , Eating , Male , Neutrophils/physiology , Random Allocation , Rumen/physiology , Sensitivity and Specificity , Temperature
15.
Animals (Basel) ; 9(11)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694292

ABSTRACT

Bulls (n = 770, average age = 127 days, SD = 53 days of age) were fitted with an activity monitoring device for three months to study if behavior could be used for early detection of diseases. The device measured the number of steps, lying time, lying bouts, and frequency and time of attendance at the feed bunk. All healthy bulls (n = 699) throughout the trial were used to describe the normal behavior. A match-pair test was used to assign healthy bulls for the comparison vs. sick bulls. The model was developed with 70% of the data, and the remaining 30% was used for the validation. Healthy bulls did 2422 ± 128 steps/day, had 28 ± 1 lying bouts/day, spent 889 ± 12 min/day lying, and attended the feed bunk 8 ± 0.2 times/d for a total of 95 ± 8 min/day. From the total of bulls enrolled in the study, 71 (9.2%) were diagnosed sick. Their activities changed at least 10 days before the clinical signs of disease. Bulls at risk of becoming sick were predicted 9 days before clinical signs with a sensitivity and specificity of 79% and 81%, respectively. The validation of the model resulted in a sensitivity, specificity, and accuracy of 92%, 42%, and 82 %, respectively, and a 50% false positive and 12.5% false negative rates. Results suggest that activity-monitoring systems may be useful in the early identification of sick bulls. However, the high false positive rate may require further refinement.

16.
J Anim Sci ; 97(3): 1171-1184, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30597005

ABSTRACT

Objectives were to determine whether live yeast (LY) supplementation would affect daily dry matter feed intake, body weight (BW), immune, and febrile responses to a viral-bacterial (VB) respiratory challenge. Crossbred heifers (N = 38, BW = 230 ± 16.4 kg) were allocated into a 2 × 2 factorial treatment arrangement: Factor 1 = roughage-based diet with or without LY (Saccharomyces cerevisiae boulardii CNCM I-1079, 62.5 g/hd/d), Factor 2 = VB, intranasal administration of bovine herpesvirus-1 (BHV-1, 2 ×108, PFU) on day 0 and endobronchial inoculation with Mannheimia haemolytica (5.4 × 1010, CFU) on day 3, or intranasal saline administration followed by inoculation with phosphate buffer solution (PBS). Heifers were fed their respective diets for 27 d prior to VB challenge on day 0. Heifers were housed by treatment and group-fed using electronic feedbunks. Thermo-boluses (Medria; Châteaubourg, FR) measured rumen temperature (RUT) at 5-min intervals and rectal temperature and whole blood samples were collected on days 0, 3 to 8, 10, 13, and 15. Data were analyzed using repeated measures in the mixed procedure of SAS with fixed effects of day, diet, inoculation, and their interactions. Animals fed LY exhibited a 16% increase (P = 0.02) in neutrophils relative to CON. Diet × inoculation × day interactions were detected for monocytes and haptoglobin. The VB-LY had the greatest (P < 0.05) concentration of monocytes on day 4, followed by VB-CON which was greater (P < 0.05) than PBS treatments. Haptoglobin concentration was greatest (P < 0.02) for VB-CON on day 5, followed by VB-LY which was greater (P < 0.05) than PBS. Heifers supplemented with LY had less (P < 0.05) haptoglobin production than CON. The VB challenge produced nasal lesions that increased (P < 0.01) with day, reaching a zenith on day 6 with 70% of the nares covered with plaques, and increased (P < 0.05) neutrophils on days 3 to 5. The VB challenge increased RUT (P < 0.05) days 2 to 7 and rectal temperature (P < 0.05) on days 0 and 3 to 6. The increased rectal temperature on day 0 was likely due to increased ambient temperature at time of challenge, as VB heifers were processed after the PBS heifers to avoid contamination. The VB challenge was effective at stimulating immune responses, and RUT was effective for measuring febrile responses. These results indicate that prior LY supplementation altered the leukogram in response to VB challenge, suggestive of increased innate immune response.


Subject(s)
Bovine Respiratory Disease Complex/immunology , Cattle Diseases/immunology , Dietary Supplements , Herpesvirus 1, Bovine/immunology , Mannheimia haemolytica/immunology , Saccharomyces cerevisiae , Animal Feed/analysis , Animals , Bovine Respiratory Disease Complex/microbiology , Cattle , Cattle Diseases/microbiology , Diet/veterinary , Eating , Female , Haptoglobins/analysis , Immunity, Innate , Rumen/physiology , Up-Regulation
17.
J Anim Sci ; 97(2): 596-609, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30496421

ABSTRACT

Objectives of this experiment were to examine the effects of live yeast (LY) supplementation on immunological, physiological, and behavioral responses in steers experimentally challenged with Mannheimia haemolytica (MH). Thirty-six crossbred Angus steers (BW = 352 ± 23 kg) seronegative for MH were allocated within a 2 × 2 factorial arrangement: Factor 1 = roughage-based diet with LY (Saccharomyces cerevisiae boulardii CNCM I-1079, 25 g·per steer daily) or negative control (CON). Factor 2 = bronchoselective endoscopic inoculation with MH or phosphate buffer solution (PBS). Steers were fed their respective diets for 28 d prior to MH challenge on day 0. Reticulo-rumen temperature (RUT; ThermoBolus, Medria) was measured continuously at 5-min intervals and rectal temperature on days -4, 0, 1, 2, 3, 5, 7, 10, and 14 relative to MH inoculation. Compared with PBS-treated steers, the steers inoculated with MH had increased (P < 0.05) RUT from 2 to 24 h, reaching a zenith (>41 °C) 9 to 11 h post-MH challenge, whereas rectal temperature was increased (P < 0.04) in MH-inoculated steers on day 1 post-MH challenge. Supplementation with LY increased (P < 0.05) rectal temperature on days 0, 7, and 10, relative to CON steers. There were inoculation x day interactions (P < 0.01) for lymphocyte, neutrophil, leukocyte, and haptoglobin concentrations. Steers challenged with MH had increased (P < 0.05) neutrophil concentration from days 1 to 3, leukocyte concentration on days 1 and 2 and haptoglobin concentration on days 1 to 5 post-MH challenge compared with PBS-treated steers. Steers supplemented with LY exhibited increased (P < 0.02) cortisol throughout the study compared with the CON treatment. Following inoculation, MH-challenged steers exhibited reduced (P < 0.05) DMI, eating rate, frequency, and duration of bunk visit (BV) events compared with PBS-treated steers. Results from this study demonstrate that the experimental challenge model effectively stimulated acute-immune responses and behavioral changes that are synonymous with naturally occurring bovine respiratory disease (BRD). However, supplementation with LY minimally altered the impact of the MH challenge on physiological and behavioral responses in this study. Continuously measured RUT was more sensitive at detecting febrile responses to MH challenge than rectal temperature. These results serve to guide future research on behavioral and physiological alterations exhibited during a BRD infection.


Subject(s)
Cattle/physiology , Dietary Supplements , Feeding Behavior , Mannheimia haemolytica/immunology , Saccharomyces cerevisiae , Animal Feed/analysis , Animals , Cattle/immunology , Cattle/microbiology , Diet/veterinary , Eating/drug effects , Haptoglobins/analysis , Male , Rumen/physiology , Up-Regulation
18.
Can J Microbiol ; 60(5): 255-66, 2014 May.
Article in English | MEDLINE | ID: mdl-24766220

ABSTRACT

There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.


Subject(s)
Cecum/microbiology , Chickens/growth & development , Chickens/microbiology , Mannans/administration & dosage , Prebiotics , Animals , Anti-Bacterial Agents/administration & dosage , Cecum/cytology , Cecum/drug effects , Denaturing Gradient Gel Electrophoresis , Dietary Supplements/analysis , Intestines/cytology , Intestines/drug effects , Intestines/microbiology , Lactobacillus , Male , Virginiamycin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...