Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 19(8): 995-1003, 2022 08.
Article in English | MEDLINE | ID: mdl-35879608

ABSTRACT

Explaining the diversity and complexity of protein localization is essential to fully understand cellular architecture. Here we present cytoself, a deep-learning approach for fully self-supervised protein localization profiling and clustering. Cytoself leverages a self-supervised training scheme that does not require preexisting knowledge, categories or annotations. Training cytoself on images of 1,311 endogenously labeled proteins from the OpenCell database reveals a highly resolved protein localization atlas that recapitulates major scales of cellular organization, from coarse classes, such as nuclear and cytoplasmic, to the subtle localization signatures of individual protein complexes. We quantitatively validate cytoself's ability to cluster proteins into organelles and protein complexes, showing that cytoself outperforms previous self-supervised approaches. Moreover, to better understand the inner workings of our model, we dissect the emergent features from which our clustering is derived, interpret them in the context of the fluorescence images, and analyze the performance contributions of each component of our approach.


Subject(s)
Deep Learning , Cluster Analysis , Organelles/metabolism , Protein Transport , Proteins/metabolism
2.
Science ; 375(6585): eabi6983, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271311

ABSTRACT

Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates functional communities that facilitate biological discovery. We found that remarkably precise functional information can be derived from protein localization patterns, which often contain enough information to identify molecular interactions, and that RNA binding proteins form a specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of human cellular organization.


Subject(s)
Protein Interaction Mapping , Proteins/metabolism , Proteome/metabolism , Proteomics/methods , CRISPR-Cas Systems , Cluster Analysis , Datasets as Topic , Fluorescent Dyes , HEK293 Cells , Humans , Immunoprecipitation , Machine Learning , Mass Spectrometry , Microscopy, Confocal , RNA-Binding Proteins/metabolism , Spatial Analysis
3.
Nucleic Acids Res ; 41(15): 7370-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23775792

ABSTRACT

The mechanism responsible for the accurate partitioning of newly replicated Escherichia coli chromosomes into daughter cells remains a mystery. In this article, we use automated cell cycle imaging to quantitatively analyse the cell cycle dynamics of the origin of replication (oriC) in hundreds of cells. We exploit the natural stochastic fluctuations of the chromosome structure to map both the spatial and temporal dependence of the motional bias segregating the chromosomes. The observed map is most consistent with force generation by an active mechanism, but one that generates much smaller forces than canonical molecular motors, including those driving eukaryotic chromosome segregation.


Subject(s)
Chromosome Mapping/methods , Chromosome Segregation , DNA Replication , Escherichia coli/genetics , Cell Division , Centromere/genetics , Centromere/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , Escherichia coli/metabolism , Genetic Loci , Models, Molecular , Replication Origin , Stochastic Processes , Time Factors
4.
Proc Natl Acad Sci U S A ; 107(11): 4991-5, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20194778

ABSTRACT

The stochasticity of chromosome organization was investigated by fluorescently labeling genetic loci in live Escherichia coli cells. In spite of the common assumption that the chromosome is well modeled by an unstructured polymer, measurements of the locus distributions reveal that the E. coli chromosome is precisely organized into a nucleoid filament with a linear order. Loci in the body of the nucleoid show a precision of positioning within the cell of better than 10% of the cell length. The precision of interlocus distance of genomically-proximate loci was better than 4% of the cell length. The measured dependence of the precision of interlocus distance on genomic distance singles out intranucleoid interactions as the mechanism responsible for chromosome organization. From the magnitude of the variance, we infer the existence of an as-yet uncharacterized higher-order DNA organization in bacteria. We demonstrate that both the stochastic and average structure of the nucleoid is captured by a fluctuating elastic filament model.


Subject(s)
Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Escherichia coli/metabolism , Escherichia coli/cytology , Escherichia coli/genetics , Genetic Loci/genetics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...