Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2337671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38551320

ABSTRACT

Hepatitis E virus (HEV) variants infecting humans belong to two species: Paslahepevirus balayani (bHEV) and Rocahepevirus ratti (rat hepatitis E virus; rHEV). R. ratti is a ubiquitous rodent pathogen that has recently been recognized to cause hepatitis in humans. Transmission routes of rHEV from rats to humans are currently unknown. In this study, we examined rHEV exposure in cats and dogs to determine if they are potential reservoirs of this emerging human pathogen. Virus-like particle-based IgG enzymatic immunoassays (EIAs) capable of differentiating rHEV & bHEV antibody profiles and rHEV-specific real-time RT-PCR assays were used for this purpose. The EIAs could detect bHEV and rHEV patient-derived IgG spiked in dog and cat sera. Sera from 751 companion dogs and 130 companion cats in Hong Kong were tested with these IgG enzymatic immunoassays (EIAs). Overall, 13/751 (1.7%) dogs and 5/130 (3.8%) cats were sero-reactive to HEV. 9/751 (1.2%) dogs and 2/130 (1.5%) cats tested positive for rHEV IgG, which was further confirmed by rHEV immunoblots. Most rHEV-seropositive animals were from areas in or adjacent to districts reporting human rHEV infection. Neither 881 companion animals nor 652 stray animals carried rHEV RNA in serum or rectal swabs. Therefore, we could not confirm a role for cats and dogs in transmitting rHEV to humans. Further work is required to understand the reasons for low-level seropositivity in these animals.


Subject(s)
Cat Diseases , Dog Diseases , Hepatitis E virus , Hepatitis E , Animals , Cats , Dogs , Humans , Rats , Hepatitis E virus/genetics , Hong Kong , Animals, Wild , Pets , Immunoglobulin G
3.
JHEP Rep ; 4(10): 100546, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36052220

ABSTRACT

Background & Aims: HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods: In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results: A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions: We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary: Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans.

4.
Clin Infect Dis ; 75(2): 288-296, 2022 08 25.
Article in English | MEDLINE | ID: mdl-34718428

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) variants belonging to Orthohepevirus species A (HEV-A) are the primary cause of human hepatitis E. However, we previously reported that Orthohepevirus species C genotype 1 (HEV-C1), a divergent HEV variant commonly found in rats, also causes hepatitis in humans. Here, we present a clinical-epidemiological investigation of human HEV-C1 infections detected in Hong Kong, with an emphasis on outcomes in immunocompromised individuals. METHODS: A surveillance system for detecting human HEV-C1 infections was established in Hong Kong. Epidemiological and clinical characteristics of HEV-C1 cases identified via this system between 1 August 2019 and 31 December 2020 were retrieved. Phylogenetic analysis of HEV-C1 strain sequences was performed. Infection outcomes of immunocompromised individuals with HEV-A and HEV-C1 infections were analyzed. RESULTS: HEV-C1 accounted for 8 of 53 (15.1%) reverse-transcription polymerase chain reaction (RT-PCR)-confirmed HEV infections in Hong Kong during the study period, raising the total number of HEV-C1 infections detected in the city to 16. Two distinct HEV-C1 strain groups caused human infections. Patients were elderly and/or immunocompromised; half tested negative for HEV immunoglobulin M. Cumulatively, HEV-C1 accounted for 9 of 21 (42.9%) cases of hepatitis E recorded in immunocompromised patients in Hong Kong. Immunocompromised HEV-C1 patients progressed to persistent hepatitis at similar rates (7/9 [77.8%]) as HEV-A patients (10/12 [75%]). HEV-C1 patients responded to oral ribavirin, although response to first course was sometimes poor or delayed. CONCLUSIONS: Dedicated RT-PCR-based surveillance detected human HEV-C1 cases that evade conventional hepatitis E diagnostic testing. Immunosuppressed HEV-C1-infected patients frequently progress to persistent HEV-C1 infection, for which ribavirin is a suitable treatment option.


Subject(s)
Hepatitis C , Hepatitis E virus , Hepatitis E , Aged , Animals , Hepatitis E virus/genetics , Hong Kong/epidemiology , Humans , Phylogeny , RNA, Viral/genetics , Rats , Ribavirin
5.
J Hepatol ; 74(6): 1315-1324, 2021 06.
Article in English | MEDLINE | ID: mdl-33845058

ABSTRACT

BACKGROUND & AIMS: Rat hepatitis E virus (Orthohepevirus species C; HEV-C1) is an emerging cause of viral hepatitis in humans. HEV-C1 is divergent from other HEV variants infecting humans that belong to Orthohepevirus species A (HEV-A). This study assessed HEV-C1 antigenic divergence from HEV-A and investigated the impact of this divergence on infection susceptibility, serological test sensitivity, and vaccine efficacy. METHODS: Immunodominant E2s peptide sequences of HEV-A and HEV-C1 were aligned. Interactions of HEV-C1 E2s and anti-HEV-A monoclonal antibodies (mAbs) were modeled. Recombinant peptides incorporating E2s of HEV-A (HEV-A4 p239) and HEV-C1 (HEV-C1 p241) were expressed. HEV-A and HEV-C1 patient sera were tested using antibody enzymatic immunoassays (EIA), antigen EIAs, and HEV-A4 p239/HEV-C1 p241 immunoblots. Rats immunized with HEV-A1 p239 vaccine (Hecolin), HEV-A4 p239 or HEV-C1 p241 peptides were challenged with a HEV-C1 strain. RESULTS: E2s sequence identity between HEV-A and HEV-C1 was only 48%. There was low conservation at E2s residues (23/53; 43.4%) involved in mAb binding. Anti-HEV-A mAbs bound HEV-C1 poorly in homology modeling and antigen EIAs. Divergence resulted in low sensitivity of commercial antigen (0%) and antibody EIAs (10-70%) for HEV-C1 diagnosis. Species-specific HEV-A4 p239/HEV-C1 p241 immunoblots accurately differentiated HEV-A and HEV-C1 serological profiles in immunized rats (18/18; 100%) and infected-patient sera (32/36; 88.9%). Immunization with Hecolin and HEV-A4 p239 was partially protective while HEV-C1 p241 was fully protective against HEV-C1 infection in rats. CONCLUSIONS: Antigenic divergence significantly decreases sensitivity of hepatitis E serodiagnostic assays for HEV-C1 infection. Species-specific immunoblots are useful for diagnosing HEV-C1 and for differentiating the serological profiles of HEV-A and HEV-C1. Prior HEV-A exposure is not protective against HEV-C1. HEV-C1 p241 is an immunogenic vaccine candidate against HEV-C1. LAY SUMMARY: Rat hepatitis E virus (HEV-C1) is a new cause of hepatitis in humans. Using a combination of methods, we showed that HEV-C1 is highly divergent from the usual cause of human hepatitis (HEV-A). This divergence reduces the capacity of existing tests to diagnose HEV-C1 and also indicates that prior exposure to HEV-A (via infection or vaccination) is not protective against HEV-C1.


Subject(s)
Hepatitis Antigens/immunology , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Hepatitis E/prevention & control , Hepatitis E/veterinary , Immunogenicity, Vaccine/immunology , Vaccination/methods , Vaccine Efficacy , Vaccines, Synthetic/administration & dosage , Viral Hepatitis Vaccines/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Base Sequence , Child , Epitopes/immunology , Female , Genotype , Hepatitis Antibodies/immunology , Hepatitis E/blood , Hepatitis E/virology , Humans , Male , Middle Aged , Phylogeny , Rats , Rats, Sprague-Dawley , Treatment Outcome , Young Adult
6.
Hepatology ; 73(1): 10-22, 2021 01.
Article in English | MEDLINE | ID: mdl-31960460

ABSTRACT

BACKGROUND AND AIMS: Hepatitis E virus (HEV) variants causing human infection predominantly belong to HEV species A (HEV-A). HEV species C genotype 1 (HEV-C1) circulates in rats and is highly divergent from HEV-A. It was previously considered unable to infect humans, but the first case of human HEV-C1 infection was recently discovered in Hong Kong. The aim of this study is to further describe the features of this zoonosis in Hong Kong. APPROACH AND RESULTS: We conducted a territory-wide prospective screening study for HEV-C1 infection over a 31-month period. Blood samples from 2,860 patients with abnormal liver function (n = 2,201) or immunosuppressive conditions (n = 659) were screened for HEV-C1 RNA. In addition, 186 captured commensal rats were screened for HEV-C1 RNA. Sequences of human-derived and rat-derived HEV-C1 isolates were compared. Epidemiological and clinical features of HEV-C1 infection were analyzed. HEV-C1 RNA was detected in 6/2,201 (0.27%) patients with hepatitis and 1/659 (0.15%) immunocompromised persons. Including the previously reported case, eight HEV-C1 infections were identified, including five in patients who were immunosuppressed. Three patients had acute hepatitis, four had persistent hepatitis, and one had subclinical infection without hepatitis. One patient died of meningoencephalitis, and HEV-C1 was detected in cerebrospinal fluid. HEV-C1 hepatitis was generally milder than HEV-A hepatitis. HEV-C1 RNA was detected in 7/186 (3.76%) rats. One HEV-C1 isolate obtained from a rat captured near the residences of patients was closely related to the major outbreak strain. CONCLUSIONS: HEV-C1 is a cause of hepatitis E in humans in Hong Kong. Immunosuppressed individuals are susceptible to persistent HEV-C1 infection and extrahepatic manifestations. Subclinical HEV-C1 infection threatens blood safety. Tests for HEV-C1 are required in clinical laboratories.


Subject(s)
Disease Reservoirs/veterinary , Hepatitis E virus/genetics , Hepatitis E/epidemiology , Hepatitis E/transmission , Aged , Aged, 80 and over , Animals , Disease Reservoirs/virology , Female , Hepatitis E virus/classification , Hepatitis, Viral, Animal/transmission , Hong Kong/epidemiology , Humans , Male , Middle Aged , Phylogeny , Prospective Studies , RNA, Viral/genetics , Rats , Zoonoses/transmission , Zoonoses/virology
7.
Microorganisms ; 8(5)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384808

ABSTRACT

Hepatitis E virus (HEV) is an important cause of hepatitis, which can be transmitted via the bloodborne route. However, risk of hepatitis E among persons who inject drugs (PWIDs) is poorly understood. This study aimed to elucidate whether PWIDs are at risk for hepatitis E. We performed HEV IgM, IgG and nucleic acid detection on a cohort of 91 PWIDs and 91 age- and sex-matched organ donors. Blood HEV IgG was measured using the WHO HEV antibody standard. The effects of age, gender and addictive injection use on HEV serostatus and concentration were assessed. HEV IgG seroprevalence was 42/91 (46.2%) in the PWID group and 20/91 (22%) in the donor group (odds ratio = 3.04 (1.59-5.79), p = 0.0006). The median HEV IgG concentration was 5.8 U/mL (IQR: 2.5-7.9) in the PWID group and 2.1 U/mL (IQR: 1.2-5.3) in the donor group (p = 0.005). Increasing age and addictive injection use were significantly associated with HEV IgG serostatus, but only addictive injection use was associated with HEV IgG concentration (p = 0.024). We conclude that PWIDs are at increased risk for hepatitis E and are prone to repeated HEV exposure and reinfection as indicated by higher HEV IgG concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...