Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nitric Oxide ; 44: 71-80, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25499100

ABSTRACT

African lungfishes are obligate air breathers, with reduced gills and pulmonary breathing throughout their life. During the dry season they aestivate on land, with the collapse of secondary lamellae of their gills and the establishment of an exclusive aerial ventilation through the vascularization and expansion of their lungs. To date, the mechanisms underlining the respiratory organ remodeling in aestivating lungfishes are unknown. This study aimed to identify key switch components of the stress-induced signal transduction networks implicated in both rapid and medium-long term remodeling of the gills and lungs of the African lungfish Protopterus annectens during aestivation. Through immunofluorescence microscopy and Western blotting, the localization and the expression of nitric oxide synthase (NOS), Akt, Hsp-90 and HIF-1α were evaluated in both gills and lungs exposed to three experimental conditions: freshwater (FW), 6 months of experimentally induced aestivation (6mAe), and 6 days after arousal from 6 months of aestivation (6mAe6d). After 6mAe, the expression of NOS (p-eNOS antibody), Akt (p-Akt antibody), and Hsp-90 decreased in the gills, while NOS and Hsp-90 expression increased with Akt remained unchanged in the lungs. Upon 6mAe6d, NOS, Akt and Hsp-90 expression in the gills returned to the respective FW values. In the lungs of the aroused fish, NOS and Akt decreased to their respective FW levels, while Hsp-90 expression was enhanced with respect to aestivation. In both respiratory organs, the qualitative and quantitative patterns of HIF-1α expression correlated inversely to those of NOS. Overall, our findings suggest that the molecular components of the NOS/NO system changed in a tissue-specific manner in parallel with organ readjustment in the gills and lungs of P. annectens during aestivation and arousal.


Subject(s)
Estivation/physiology , Gills/chemistry , Lung/chemistry , Nitric Oxide Synthase/analysis , Signal Transduction/physiology , Animals , Blotting, Western , Fishes , Gills/metabolism , Lung/metabolism , Nitric Oxide Synthase/metabolism
2.
J Fish Biol ; 84(3): 603-38, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24438022

ABSTRACT

With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH3 permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH3 volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH3 back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in which it lives.


Subject(s)
Ammonia/metabolism , Fishes/physiology , Nitrogen/metabolism , Respiration , Air , Amino Acids/metabolism , Ammonia/toxicity , Animals , Brain/physiology , Glutamine/biosynthesis , Hydrogen-Ion Concentration , Membrane Transport Proteins/metabolism , Proteolysis , Urea/metabolism , Volatilization
3.
Nitric Oxide ; 32: 1-12, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23545405

ABSTRACT

African lungfishes (Protopterus spp.) are obligate air breathers which enter in a prolonged torpor (aestivation) in association with metabolic depression, and biochemical and morpho-functional readjustments during the dry season. During aestivation, the lungfish heart continues to pump, while the skeletal muscle stops to function but can immediately contract during arousal. Currently, nothing is known regarding the orchestration of the multilevel rearrangements occurring in myotomal and myocardial muscles during aestivation and arousal. Because of its universal role in cardio-circulatory and muscle homeostasis, nitric oxide (NO) could be involved in coordinating these stress-induced adaptations. Western blotting and immunofluorescence microscopy on cardiac and skeletal muscles of Protopterus annectens (freshwater, 6months of aestivation and 6days after arousal) showed that expression, localization and activity of the endothelial-like nitric oxide synthase (eNOS) isoform and its partners Akt and Hsp-90 are tissue-specifically modulated. During aestivation, phospho-eNOS/eNOS and phospho-Akt/Akt ratios increased in the heart but decreased in the skeletal muscle. By contrast, Hsp-90 increased in both muscle types during aestivation. TUNEL assay revealed that increased apoptosis occurred in the skeletal muscle of aestivating lungfish, but the myocardial apoptotic rate of the aestivating lungfish remained unchanged as compared with the freshwater control. Consistent with the preserved cardiac activity during aestivation, the expression of apoptosis repressor (ARC) also remained unchanged in the heart of aestivating and aroused fish as compared with the freshwater control. Contrarily, ARC expression was strongly reduced in the skeletal muscle of aestivating lungfish. On the whole, our data indicate that changes in the eNOS/NO system and cell turnover are implicated in the morpho-functional readjustments occurring in lungfish cardiac and skeletal muscle during the switch from freshwater to aestivation, and between the maintenance and arousal phases of aestivation.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Fishes/metabolism , Muscle, Skeletal/enzymology , Myocardium/enzymology , Nitric Oxide Synthase Type III/metabolism , Animals , Apoptosis/physiology , Estivation , Fresh Water , HSP90 Heat-Shock Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/cytology , Myocardium/metabolism , Proto-Oncogene Proteins c-akt/metabolism
4.
J Comp Physiol B ; 182(2): 231-45, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21915614

ABSTRACT

This study aimed to identify estivation-specific gene clusters through the determination of differential gene expressions in the liver of Protopterus annectens after 6 days of estivation in a mucus cocoon in air (normoxia) using suppression subtractive hybridization polymerase chain reaction. Our results demonstrated that 6 days of estivation in normoxia led to up-regulation of mRNA expressions of several genes related to urea synthesis, including carbamoyl phosphate synthetase (Cps), argininosuccinate synthetase and glutamine synthetase. They indicate that increased urea synthesis, despite being energy-intensive, is an important adaptive response of estivation. They also offer indirect support to the proposition that urea synthesis in this lungfish involved a Cps that uses glutamine as a substrate. In addition, up- or down-regulation of several gene clusters occurred in the liver of P. annectens after 6 days of estivation in normoxia. These estivation-specific genes were involved in the prevention of clot formation, activation of the lectin pathway for complement activation, conservation of minerals (e.g. iron and copper) and increased production of hemoglobin beta. Since there were up- and down-regulation of mRNA expressions of genes related to ribosomal proteins and translational elongation factors, there could be simultaneous increases in protein degradation and protein synthesis during the first 6 days (the induction phase) of estivation, confirming the importance of reconstruction of protein structures in preparation for the maintenance phase of estivation.


Subject(s)
Estivation/physiology , Fishes/metabolism , Fishes/physiology , Gene Expression Regulation/physiology , Liver/metabolism , Animals , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism , DNA Primers/genetics , Fishes/genetics , Gene Expression Profiling , Gene Library , Real-Time Polymerase Chain Reaction , Urea/metabolism
5.
J Comp Physiol B ; 182(3): 367-79, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22038021

ABSTRACT

This study aimed to obtain the full sequence of carbamoyl phosphate synthetase III (cps III) from, and to determine the mRNA expression of cps III in, the liver of P. annectens during aestivation in air, hypoxia or mud, or exposure to environmental ammonia (100 mmol l(-1) NH(4)Cl). The complete coding cDNA sequence of cps III from the liver of P. annectens consisted of 4530 bp, which coded for 1,510 amino acids with an estimated molecular mass of 166.1 kDa. The Cps III of P. annectens consisted of a mitochondrial targeting sequence of 44 amino acid residues, a GAT domain spanning from tyrosine 45 to isoleucine 414, and a methylglyoxal synthase-like domain spanning from valine 433 to arginine 1513. Two cysteine residues (cysteine 1337 and cysteine 1347) that are characteristic of N-acetylglutamate dependency were also present. The critical Cys-His-Glu catalytic triad (cysteine 301, histidine 385 and glutamate 387) together with methionine 302 and glutamine 305 affirmed that P. annectens expressed Cps III and not Cps I. A comparison of the translated amino acid sequence of Cps III from P. annectens with CPS sequences from other animals revealed that it shared the highest similarity with elasmobranch Cps III. A phylogenetic analysis indicates that P. annectens CPS III could have evolved from Cps III of elasmobranchs. Indeed, Cps III from P. annectens used mainly glutamine as the substrate, and its activity decreased significantly when glutamine and ammonia were included together in the assay system. There were significant increases (9- to 12-fold) in the mRNA expression of cps III in the liver of fish during the induction phase (days 3 and 6) of aestivation in air. Aestivation in hypoxia or in mud had a delayed effect on the increase in the mRNA expression of cps III, which extended beyond the induction phase of aestivation, reiterating the importance of differentiating effects that are intrinsic to aestivation from those intrinsic to hypoxia. Furthermore, results from this study confirmed that environmental ammonia exposure led to a significant increase in the mRNA expression of cps III in the liver of P. annectens, alluding to the important functional role of urea not only as a product of ammonia detoxification but also as a putative internal cue for aestivation.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Estivation/physiology , Evolution, Molecular , Fishes/physiology , Gene Expression Regulation/physiology , Phylogeny , Amino Acid Sequence , Ammonia/toxicity , Animals , Base Sequence , DNA, Complementary/genetics , Estivation/genetics , Fishes/genetics , Gene Expression Regulation/drug effects , Liver/metabolism , Molecular Sequence Data , RNA, Messenger/metabolism , Sequence Analysis, DNA , Species Specificity
6.
Aquat Toxicol ; 98(1): 91-8, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20189662

ABSTRACT

This study aimed to examine the hypothesis that intestinal glutamate dehydrogenase (GDH) and glutamine synthetase (GS) could be involved in ammonia detoxification in the euryhaline Bostrychus sinensis exposed to ammonia in a hyperosmotic environment, whereby drinking was essential for osmoregulation. Our results indicate that there was a significant increase in ammonia content in the intestine of B. sinensis exposed to 15 mmol l(-1) NH(4)Cl in seawater (pH 7.0) for 6 days. There were also significant increases in the amination and deamination activities and protein abundance of intestinal GDH. The GDH amination/deamination ratio remained unchanged, indicating that there could be increases in the turnover of glutamate. However, the difference between the amination and deamination activities increased 2-fold, implying that there could be an increase in glutamate formation in the intestine. Since the intestinal glutamate content remained unchanged, excess glutamate formed might have been channeled into other amino acids and/or transported to other organs. Indeed, the intestinal glutamine content increased significantly by 2-fold, with a significant increase in the activity and protein abundance of intestinal GS. Since the magnitude of glutamine accumulation in the intestine was lower than those in liver and muscle, which lacked changes in GDH activities, intestinal glutamate could have been shuttled to liver and muscle to facilitate increased synthesis of glutamine therein. By contrast, when fish were exposed to a much higher concentration (30 mmol l(-1)) of NH(4)Cl in 5 per thousand water (pH. 7.0), the magnitude of increase in ammonia content in the intestine was less prominent, and there were no changes in activities and kinetic properties of intestinal GDH. Therefore, it can be concluded that the intestine of B. sinensis was involved in the defense against ammonia toxicity during exposure to ammonia in a hyperosmotic medium.


Subject(s)
Ammonia/metabolism , Glutamate Dehydrogenase/metabolism , Glutamate-Ammonia Ligase/metabolism , Intestines/enzymology , Perciformes/metabolism , Water Pollutants, Chemical/metabolism , Ammonia/analysis , Ammonia/toxicity , Ammonium Chloride/metabolism , Ammonium Chloride/toxicity , Animals , Enzyme Activation/drug effects , Glutamic Acid/metabolism , Liver/chemistry , Liver/enzymology , Muscle, Skeletal/chemistry , Muscle, Skeletal/enzymology , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water-Electrolyte Balance
7.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R608-16, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20042690

ABSTRACT

We examined some of the potential mechanisms lungfish (Protopterus dolloi) use to regulate cytochrome c oxidase (CCO), during metabolic depression. CCO activity was reduced by 67% in isolated liver mitochondria of estivating fish. This was likely accomplished, in part, by the 46% reduction in CCO subunit I protein expression in the liver. No change in the mRNA expression levels of CCO subunits I, II, III, and IV were found in the liver, suggesting CCO is under translational regulation; however, in the kidney, messenger limitation may be a factor as the expression of subunits I and II were depressed ( approximately 10-fold) during estivation, suggesting tissue-specific mechanisms of regulation. CCO is influenced by mitochondrial membrane phospholipids, particularly cardiolipin (CL). In P. dolloi, the phospholipid composition of the liver mitochondrial membrane changed during estivation, with a approximately 2.3-fold reduction in the amount of CL. Significant positive correlations were found between CCO activity and the amount of CL and phosphatidylethanolamine within the mitochondrial membrane. It appears CCO activity is regulated through multiple mechanisms in P. dolloi, and individual subunits of CCO are regulated independently, and in a tissue-specific manner. It is proposed that altering the amount of CL within the mitochondrial membrane may be a means of regulating CCO activity during metabolical depression in the African lungfish, P. dolloi.


Subject(s)
Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Estivation/physiology , Fishes/physiology , Mitochondria/enzymology , Animals , Cardiolipins/metabolism , Energy Metabolism/physiology , Gene Expression Regulation, Enzymologic/physiology , Liver/metabolism , Mitochondrial Membranes/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
8.
Prog Mol Subcell Biol ; 49: 63-94, 2010.
Article in English | MEDLINE | ID: mdl-20069405

ABSTRACT

In this chapter, up-to-date information on nitrogen metabolism and excretion in various aestivators is presented. Although aestivation involves long-term fasting and corporal torpor, adaptive responses with regard to excretory nitrogen metabolism exhibited by aestivators during aestivation differ from those exhibited by nonaestivators undergoing fasting or immobilization. Special efforts were made to address current issues pertaining to excretory nitrogen metabolism and related phenomena in aestivators. Adaptations exhibited by aestivators were discussed in relation to the induction, maintenance, and arousal phases of aestivation. For the induction phase, we included topics like urea as an internal induction signal for aestivation, alteration in the permeability of the skin to ammonia, and changes in rate of ammonia production and urea synthesis. For the maintenance phase, the emphasis was on protein synthesis and degradation, ammonia production, and urea synthesis and accumulation. For the arousal phase, the focus was on rehydration, urea excretion, and phenomena related to feeding. Adaptations exhibited by aestivators specifically to each of these three phases of aestivation are essential to the understanding of the overall aestivation process, but, at present, only limited information is available on excretory nitrogen metabolism in animals during the induction or arousal phases of aestivation. Therefore, future efforts should be made to identify adaptive responses particular to each of the three phases of aestivation in various aestivators.


Subject(s)
Defecation/physiology , Estivation/physiology , Nitrogen/metabolism , Animals , Body Temperature , Desiccation , Feeding Behavior/physiology
9.
J Exp Biol ; 212(Pt 23): 3828-36, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19915125

ABSTRACT

This study aimed to examine whether the stenohaline freshwater stingray, Potamotrygon motoro, which lacks a functional ornithine-urea cycle, would up-regulate glutamine synthetase (GS) activity and protein abundance, and accumulate glutamine during a progressive transfer from freshwater to brackish (15 per thousand) water with daily feeding. Our results revealed that, similar to other freshwater teleosts, P. motoro performed hyperosmotic regulation, with very low urea concentrations in plasma and tissues, in freshwater. In 15 per thousand water, it was non-ureotelic and non-ureoosmotic, acting mainly as an osmoconformer with its plasma osmolality, [Na+] and [Cl-] comparable to those of the external medium. There were significant increases in the content of several free amino acids (FAAs), including glutamate, glutamine and glycine, in muscle and liver, but not in plasma, indicating that FAAs could contribute in part to cell volume regulation. Furthermore, exposure of P. motoro to 15 per thousand water led to up-regulation of GS activity and protein abundance in both liver and muscle. Thus, our results indicate for the first time that, despite the inability to synthesize urea and the lack of functional carbamoyl phosphate synthetase III (CPS III) which uses glutamine as a substrate, P. motoro retained the capacity to up-regulate the activity and protein expression of GS in response to salinity stress. Potamotrygon motoro was not nitrogen (N) limited when exposed to 15 per thousand water with feeding, and there were no significant changes in the amination and deamination activities of hepatic glutamate dehydrogenase. In contrast, P. motoro became N limited when exposed to 10 per thousand water with fasting and could not survive well in 15 per thousand water without food.


Subject(s)
Acclimatization/physiology , Gene Expression Regulation, Enzymologic/physiology , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , Salinity , Skates, Fish/physiology , Ammonia/metabolism , Analysis of Variance , Animals , Blotting, Western , Fresh Water/chemistry , Liver/metabolism , Muscle, Skeletal/metabolism , Skates, Fish/metabolism , Urea/metabolism
10.
J Comp Physiol B ; 178(7): 853-65, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18504593

ABSTRACT

We examined the energy status, nitrogen metabolism and hepatic glutamate dehydrogenase activity in the African lungfish Protopterus annectens during aestivation in normoxia (air) or hypoxia (2% O(2) in N(2)), with tissues sampled on day 3 (aerial exposure with preparation for aestivation), day 6 (entering into aestivation) or day 12 (undergoing aestivation). There was no accumulation of ammonia in tissues of fish exposed to normoxia or hypoxia throughout the 12-day period. Ammonia toxicity was avoided by increased urea synthesis and/or decreased endogenous N production (as ammonia), but the dependency on these two mechanisms differed between the normoxic and the hypoxic fish. The rate of urea synthesis increased 2.4-fold, with only a 12% decrease in the rate of N production in the normoxic fish. By contrast, the rate of N production in the hypoxic fish decreased by 58%, with no increase in the rate of urea synthesis. Using in vivo (31)P NMR spectroscopy, it was demonstrated that hypoxia led to significantly lower ATP concentration on day 12 and significantly lower creatine phosphate concentration on days 1, 6, 9 and 12 in the anterior region of the fish as compared with normoxia. Additionally, the hypoxic fish had lower creatine phosphate concentration in the middle region than the normoxic fish on day 9. Hence, lowering the dependency on increased urea synthesis to detoxify ammonia, which is energy intensive by reducing N production, would conserve cellular energy during aestivation in hypoxia. Indeed, there were significant increases in glutamate concentrations in tissues of fish aestivating in hypoxia, which indicates decreases in its degradation and/or transamination. Furthermore, there were significant increases in the hepatic glutamate dehydrogenase (GDH) amination activity, the amination/deamination ratio and the dependency of the amination activity on ADP activation in fish on days 6 and 12 in hypoxia, but similar changes occurred only in the normoxic fish on day 12. Therefore, our results indicate for the first time that P. annectens exhibited different adaptive responses during aestivation in normoxia and in hypoxia. They also indicate that reduction in nitrogen metabolism, and probably metabolic rate, did not occur simply in association with aestivation (in normoxia) but responded more effectively to a combined effect of aestivation and hypoxia.


Subject(s)
Energy Metabolism/physiology , Estivation/physiology , Fishes/metabolism , Hypoxia/physiopathology , Nitrogen/metabolism , Adenosine Triphosphate/metabolism , Ammonia/metabolism , Animals , Fatty Acids, Nonesterified/metabolism , Female , Glutamate Dehydrogenase/metabolism , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Phosphocreatine/metabolism , Urea/metabolism
11.
Aquat Toxicol ; 86(2): 185-96, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18068826

ABSTRACT

The objective of this study was to elucidate the mechanisms of acute ammonia toxicity in the aquatic Chinese soft-shelled turtle, Pelodiscus sinensis, and to examine how this turtle defended against a sublethal dose of NH(4)Cl injected into its peritoneal cavity. The ammonia and glutamine contents in the brains of turtles that succumbed within 3h to an intraperitoneal injection with a lethal dose (12.5 micromolg(-1) turtle) of NH(4)Cl were 21 and 4.4 micromolg(-1), respectively. Since the brain glutamine content increased to 8 micromolg(-1) at hour 6 and recovered thereafter in turtles injected with a sub-lethal dose of NH(4)Cl (7.5 micromolg(-1) turtle), it can be concluded that increased glutamine synthesis and accumulation was not the major cause of acute ammonia toxicity in P. sinensis. Indeed, the administration of l-methionine S-sulfoximine (MSO; 82 microgg(-1) turtle), a glutamine synthetase (GS) inhibitor, prior to the injection of a lethal dose of NH(4)Cl had no significant effect on the mortality rate. Although the prior administration of MSO led to an extension of the time to death, it was apparently a result of its effects on glutamate dehydrogenase and glutamate formation, instead of glutamine synthesis and accumulation, in the brain. By contrast, a prior injection with MK801 (1.6 microgg(-1) turtle), a NMDA receptor antagonist, reduced the 24h mortality of turtles injected with a lethal dose of NH(4)Cl by 50%. Thus, acute ammonia toxicity in P. sinensis was probably a result of glutamate dysfunction and the activation of NMDA receptors. NMDA receptor activation could also be exacerbated through membrane depolarization caused by the extraordinarily high level of ammonia (21 micromolg(-1) brain) in the brain of turtles that succumbed to a lethal dose of NH(4)Cl. One hour after the injection with a sub-lethal dose of NH(4)Cl, the brain of P. sinensis exhibited an extraordinarily high tolerance of ammonia (16 micromolg(-1) brain). The transient nature of ammonia accumulation indicates that P. sinensis could ameliorate ammonia toxicity through the suppression of endogenous ammonia production and/or the excretion of exogenous ammonia. Despite being ureogenic and ureotelic, only a small fraction of the exogenous ammonia was detoxified to urea. A major portion of ammonia was excreted unchanged, resulting in an apparent ammonotely in the experimental turtles. Since there were increases in total essential free amino acid contents in the brain, liver and muscle, it can be deduced that a suppression of amino acid catabolism had occurred, reducing the production of endogenous ammonia and hence alleviating the possibility of ammonia intoxication.


Subject(s)
Ammonium Chloride/metabolism , Ammonium Chloride/toxicity , Brain/drug effects , Turtles , Amino Acids/analysis , Ammonia/analysis , Ammonium Chloride/administration & dosage , Animals , Brain/enzymology , Brain/metabolism , Dizocilpine Maleate/pharmacology , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Glutamate Dehydrogenase/analysis , Glutamate Dehydrogenase/metabolism , Glutamate-Ammonia Ligase/analysis , Glutamate-Ammonia Ligase/metabolism , Liver/chemistry , Methionine Sulfoximine/pharmacology , Muscles/chemistry , Urea/analysis , Water/analysis
12.
Respir Physiol Neurobiol ; 160(1): 8-17, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17974507

ABSTRACT

African lungfish, Protopterus dolloi exhibited constant rates of O(2) consumption before (0.95+/-0.07 mmol kg(-1) h(-1)), during (1.21+/-0.32 mmol kg(-1) h(-1)) and after (1.14+/-0.14 mmol kg(-1) h(-1)) extended periods (1-2 months) of terrestrialization while cocooned. Although a breathing event in terrestrialized fish consisted of multiple bouts of inspiration and expiration in rapid succession, the mean frequency of pulmonary breathing events was unaltered in the terrestrialized fish (16.7+/-1.4 h(-1)versus 20.1+/-4.9 h(-1) in the aquatic and terrestrialized fish, respectively). Hypoxia (approximately 20 mmHg) increased the frequency of breathing events by 16 and 23 h(-1) in the aquatic and terrestrialized fish, respectively. Hyperoxia (approximately 550 mmHg) decreased breathing event frequency by 10 and 15 h(-1) in the aquatic and terrestrialized animals. Aquatic hypercapnia (approximately 37.5 mmHg) increased pulmonary breathing frequency (from 15.3+/-2.3 to 28.7+/-5.4 h(-1)) in free swimming lungfish, whereas aerial hypercapnia was without effect in aquatic or terrestrialized fish.


Subject(s)
Estivation/physiology , Fishes/physiology , Respiratory Mechanics/physiology , Animals , Blood Gas Analysis , Catecholamines/blood , Hypercapnia/physiopathology , Hyperoxia/physiopathology , Hypoxia/physiopathology , Metabolism/physiology , Oxygen Consumption , Species Specificity
13.
Aquat Toxicol ; 85(1): 76-86, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17881067

ABSTRACT

This study aimed to determine how the African lungfish Protopterus aethiopicus defended against ammonia toxicity when confronted with high concentrations (30 or 100 mmoll(-1)) of environmental ammonia. Exposure to 100 mmoll(-1) of NH(4)Cl for 1 or 6 days had no significant effect on the rate of O(2) uptake from water or from air, and the rate of total O(2) consumption. Using an Ussing-like apparatus, we report for the first time that the skin of P. aethiopicus had low permeability (1.26 x 10(-4) micromol min(-1)cm(-1)) to NH(3)in vitro. Indeed, the influx of exogenous ammonia into fish exposed to 30 mmoll(-1) NH(4)Cl was low (0.117 micromol min(-1) 100g(-1) fish). As a result, P. aethiopicus could afford to maintain relatively low ammonia contents in plasma, muscle, liver and brain even after 6 days of exposure to 100 mmoll(-1) NH(4)Cl. Surprisingly, fish exposed to 30 or 100 mmoll(-1) NH(4)Cl had comparable ammonia contents in the muscle and the brain in spite of the big difference (70 mmoll(-1)) in environmental ammonia concentrations. Significant increases in urea contents occurred in various tissues of fish exposed to 30 mmoll(-1) NH(4)Cl for 6 days, but there were no significant differences in tissue urea contents between fish exposed to 30 mmoll(-1) and 100 mmoll(-1) NH(4)Cl. Between days 3 and 6, the rate of urea excretion in fish exposed to 30 mmoll(-1) NH(4)Cl was significantly greater than that of the control. By contrast, there was no significant difference in urea excretion rates between fish exposed to 100 mmoll(-1) NH(4)Cl and control fish throughout the 6-day period, and such a phenomenon has not been reported before for other lungfish species. Thus, our results suggest that P. aethiopicus was capable of decreasing the NH(3) permeability of its body surface when exposed to high concentrations of environmental ammonia. Indeed, after 6 days of exposure to 100 mmoll(-1) NH(4)Cl, the NH(3) permeability constant of the skin (0.55 x 10(-4) micromol min(-1)cm(-1)) decreased to half of that of the control. A decrease in the already low cutaneous NH(3) permeability and an increased urea synthesis, working in combination, allowed P. aethiopicus to effectively defend against environmental ammonia toxicity without elevating the plasma ammonia level. Therefore, unlike other fishes, glutamine and alanine contents did not increase in the muscle and liver, and there was no accumulation of glutamine in the brain, even when the fish was immersed in water containing 100 mmoll(-1) NH(4)Cl.


Subject(s)
Ammonia/toxicity , Environmental Exposure , Fishes/physiology , Oxygen Consumption/drug effects , Water Pollutants, Chemical/toxicity , Amino Acids/blood , Ammonia/metabolism , Animals , Female , Male , Permeability/drug effects , Skin/drug effects , Skin/metabolism , Urea/analysis , Urea/metabolism , Water Pollutants, Chemical/metabolism
14.
J Exp Biol ; 210(Pt 11): 1944-59, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17515420

ABSTRACT

African lungfish Protopterus annectens utilized both respiratory and metabolic compensation to restore arterial pH to control levels following the imposition of a metabolic acidosis or alkalosis. Acid infusion (3 mmol kg(-1) NH(4)Cl) to lower arterial pH by 0.24 units increased both pulmonary (by 1.8-fold) and branchial (by 1.7-fold) ventilation frequencies significantly, contributing to 4.8-fold and 1.9-fold increases in, respectively, aerial and aquatic CO(2) excretion. This respiratory compensation appeared to be the main mechanism behind the restoration of arterial pH, because even though net acid excretion (J(net)H(+)) increased following acid infusion in 7 of 11 fish, the mean increase in net acid excretion, 184.5+/-118.5 micromol H(+) kg(-1) h(-1) (mean +/- s.e.m., N=11), was not significantly different from zero. Base infusion (3 mmol kg(-1) NaHCO(3)) to increase arterial pH by 0.29 units halved branchial ventilation frequency, although pulmonary ventilation frequency was unaffected. Correspondingly, aquatic CO(2) excretion also fell significantly (by 3.7-fold) while aerial CO(2) excretion was unaffected. Metabolic compensation consisting of negative net acid excretion (net base excretion) accompanied this respiratory compensation, with J(net)H(+) decreasing from 88.5+/-75.6 to -337.9+/-199.4 micromol H(+) kg(-1) h(-1) (N=8). Partitioning of net acid excretion into renal and extra-renal (assumed to be branchial and/or cutaneous) components revealed that under control conditions, net acid excretion occurred primarily by extra-renal routes. Finally, several genes that are involved in the exchange of acid-base equivalents between the animal and its environment (carbonic anhydrase, V-type H(+)-ATPase and Na(+)/HCO (-)(3) cotransporter) were cloned, and their branchial and renal mRNA expressions were examined prior to and following acid or base infusion. In no case was mRNA expression significantly altered by metabolic acid-base disturbance. These findings suggest that lungfish, like tetrapods, alter ventilation to compensate for metabolic acid-base disturbances, a mechanism that is not employed by water-breathing fish. Like fish and amphibians, however, extra-renal routes play a key role in metabolic compensation.


Subject(s)
Acid-Base Equilibrium , Fishes/genetics , Fishes/metabolism , Amino Acid Sequence , Animals , Base Sequence , Carbonic Anhydrases/genetics , Female , Gills/metabolism , Kidney/metabolism , Male , Molecular Sequence Data , Phylogeny , Proton-Translocating ATPases/genetics , RNA, Messenger/metabolism , Sodium-Bicarbonate Symporters/genetics
15.
Tissue Antigens ; 69 Suppl 1: 248-51, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17445213

ABSTRACT

An immunohistochemistry (IH) quality control exercise was conducted as part of the 14th International HLA (human leukocyte antigen) and Immunogenetics Workshop (IHIWS) HLA Expression and Cancer component. Six laboratories participated and the exercises involved performing IH using three monoclonal antibodies (HC-10, beta2m and SI00) on three sequential paraffin-embedded melanoma sections provided by one laboratory. High-resolution digital photographs of five IH-stained sections were also distributed for interpretation. While there was generally good agreement between laboratories, several differences in staining and interpretation of IH sections were identified and possible reasons given. Interpretation of the high-resolution digital photographs showed a high level of concordance between laboratories. It is suggested that further exercises are conducted as part of future collaborative activities in order to further characterise areas of variability between IH performance and interpretation of results.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Melanoma/metabolism , Quality Control , Skin Neoplasms/metabolism , Antibodies, Monoclonal , Histocompatibility Antigens Class I/immunology , Humans , Immunoenzyme Techniques , Melanoma/immunology , Paraffin Embedding , Skin Neoplasms/immunology , beta 2-Microglobulin/immunology , beta 2-Microglobulin/metabolism
16.
Tissue Antigens ; 69 Suppl 1: 252-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17445214

ABSTRACT

Human leukocyte antigen (HLA) class I expression in melanoma is usually assessed using immunohistochemical staining. Here we report on the use of Fourier transform infrared (FTIR) hyperspectral imaging, a method widely used in two-dimensional analysis of chemical components, to study HLA class I expression in tissue. Two-dimensional cluster colour images derived from unsupervised hierarchical cluster analysis of FTIR hyperspectral data on melanoma sections were compared with consecutive sections that were immunohistochemically stained for class I expression. HLA-class-I-positive and -negative areas were differentiated by FTIR cluster images in all eight melanoma sections investigated without the need for antibody attachment. FTIR imaging enables the distinction of HLA-class-I-positive from class-I-negative areas in melanoma. This method is accurate, rapid and cost-effective.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Spectroscopy, Fourier Transform Infrared , Humans , Melanoma/metabolism , Skin Neoplasms/metabolism
17.
J Exp Biol ; 208(Pt 19): 3805-15, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16169956

ABSTRACT

Experiments were performed on bimodally breathing African lungfish Protopterus dolloi to examine the effects of inhibition of extracellular vs total (extracellular and intracellular) carbonic anhydrase (CA) activity on pulmonary and branchial/cutaneous gas transfer. In contrast to previous studies on Protopterus, which showed that the vast majority of CO(2) is excreted into the water through the gill and/or skin whereas O(2) uptake largely occurs via the lung, P. dolloi appeared to use the lung for the bulk of both O(2) uptake (91.0+/-2.9%) and CO(2) excretion (76.0+/-6.6%). In support of the lung as the more important site of CO(2) transfer, aerial hypercapnia (P(CO(2))=40 mmHg) caused a significant rise in partial pressure of arterial blood CO(2) (Pa(CO(2))) whereas a similar degree of aquatic hypercapnia was without effect on Pa(CO(2)). Intravascular injection of low levels (1.2 mg kg(-1)) of the slowly permanent CA inhibitor, benzolamide, was without effect on red blood cell CA activity after 30 min, thus confirming its suitability as a short-term selective inhibitor of extracellular CA. Benzolamide treatment did not affect CO(2) excretion, blood acid-base status or any other measured variable within the 30 min measurement period. Injection of the permeant CA inhibitor acetazolamide (30 mg kg(-1)) resulted in the complete inhibition of red cell CA activity within 10 min. However, CO(2) excretion (measured for 2 h after injection) and arterial blood acid-base status (assessed for 24 h after injection) were unaffected by acetazolamide treatment. Intra-arterial injection of bovine CA (2 mg kg(-1)) caused a significant increase in overall CO(2) excretion (from 0.41+/-0.03 to 0.58+/-0.03 mmol kg(-1) h(-1)) and an increase in air breathing frequency (from 19.0+/-1.3 to 24.7+/-1.8 breaths min(-1)) that was accompanied by a slight, but significant, reduction in Pa(CO(2)) (from 21.6+/-1.6 to 19.6+/-1.8 mmHg). The findings of this study are significant because they (i) demonstrate that, unlike in other species of African lungfish that have been examined, the gill/skin is not the major route of CO(2) excretion in P. dolloi, and (ii) suggest that CO(2) excretion in Protopterus may be less reliant on carbonic anhydrase than in most other fish species.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Fishes/physiology , Lung/physiology , Pulmonary Gas Exchange/physiology , Respiration , Acetazolamide/pharmacology , Africa South of the Sahara , Analysis of Variance , Animals , Benzolamide/pharmacology , Carbon Dioxide/blood , Carbon Dioxide/metabolism , Carbonic Anhydrases/physiology , Erythrocytes/drug effects , Gills/physiology , Hydrogen-Ion Concentration , Oxygen/metabolism , Pulmonary Gas Exchange/drug effects
18.
Physiol Biochem Zool ; 78(4): 620-9, 2005.
Article in English | MEDLINE | ID: mdl-15957116

ABSTRACT

Monopterus albus inhabits muddy ponds, swamps, canals, and rice fields, where it can burrow into the moist earth, and it survives for long periods during the dry summer season. However, it had been reported previously that mortality increased when M. albus was exposed to air for 8 d or more. Thus, the objective of this study was to elucidate the strategies adopted by M. albus to defend against ammonia toxicity during 6 or 40 d of estivation in mud and to evaluate whether these strategies were different from those adopted by fish to survive 6 d of aerial exposure. Ammonia and glutamine accumulations occurred in the muscle and liver of fish exposed to air (normoxia) for 6 d, indicating that ammonia was detoxified to glutamine under such conditions. In contrast, ammonia accumulation occurred only in the muscle, with no increases in glutamine or glutamate contents in all tissues, of fish estivated in mud for 6 d. Similar results were obtained from fish estivated in mud for 40 d. While estivating in mud prevented excessive water loss through evaporation, M. albus was exposed to hypoxia, as indicated by significant decreases in blood P(O(2)), muscle energy charge, and ATP content in fish estivated in mud for 6 d. Glutamine synthesis is energy intensive, and that could be the reason why M. albus did not depend on glutamine synthesis to defend against ammonia toxicity when a decrease in ATP supply occurred. Instead, suppression of endogenous ammonia production was adopted as the major strategy to ameliorate ammonia toxicity when M. albus estivated in mud. Our results suggest that a decrease in O(2) level in the mud could be a more effective signal than an increase in internal ammonia level during aerial exposure to induce a suppression of ammonia production in M. albus. This might explain why M. albus is able to estivate in mud for long periods (40 d) but can survive in air for only <10 d.


Subject(s)
Estivation/physiology , Nitrogen/metabolism , Smegmamorpha/physiology , Adenosine Triphosphate/metabolism , Ammonia/metabolism , Analysis of Variance , Animals , Glutamine/metabolism , Hypoxia/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Oxygen/blood , Singapore , Smegmamorpha/metabolism , Time Factors
19.
Physiol Biochem Zool ; 78(4): 630-40, 2005.
Article in English | MEDLINE | ID: mdl-15957117

ABSTRACT

The African sharptooth catfish Clarias gariepinus lives in freshwater, is an obligatory air breather, and can survive on land during drought. The objective of this study was to elucidate how C. gariepinus defends against ammonia toxicity when exposed to terrestrial conditions. During 4 d of aerial exposure, there was no accumulation of urea in its tissues, and the rate of urea excretion remained low. Thus, exposure to terrestrial conditions for 4 d did not induce ureogenesis or ureotely in C. gariepinus. Volatilization of NH(3) was not involved in excreting ammonia during aerial exposure. In addition, there were no changes in levels of alanine in the muscle, liver, and plasma of C. gariepinus; nor were there any changes in the glutamine levels in these tissues. However, there were extraordinarily high levels of ammonia in the muscle (14 micromol g(-1)), liver (18 micromol g(-1)), and brain (11 micromol g(-1)) of fish exposed to terrestrial conditions for 4 d. This is the first report on a fish adopting high tolerance of ammonia in cells and tissues as the single major strategy to defend against ammonia toxicity during aerial exposure. At present, it is uncertain how C. gariepinus tolerates such high levels of ammonia, especially in its brain, but it can be concluded that, contrary to previous reports on two air-breathing catfishes (Clarias batrachus and Heteropneustes fossilis) from India, C. gariepinus does not detoxify ammonia to urea or free amino acids on land.


Subject(s)
Acclimatization/physiology , Air , Ammonia/metabolism , Catfishes/physiology , Alanine/blood , Alanine/metabolism , Analysis of Variance , Animals , Brain/metabolism , Catfishes/metabolism , Glutamine/blood , Glutamine/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Time Factors , Urea/metabolism
20.
Physiol Biochem Zool ; 78(3): 325-34, 2005.
Article in English | MEDLINE | ID: mdl-15887079

ABSTRACT

Circulating catecholamine levels and a variety of cardiorespiratory variables were monitored in cannulated bimodally breathing African lungfish (Protopterus dolloi) exposed to aquatic or aerial hypoxia. Owing to the purported absence of external branchial chemoreceptors in lungfish and the minor role played by the gill in O2 uptake, it was hypothesized that plasma catecholamine levels would increase only during exposure of fish to aerial hypoxia. The rapid induction of aquatic hypoxia (final PWo2 = 25.9+/-1.6 mmHg) did not affect the levels of adrenaline (A) or noradrenaline (NA) within the plasma. Similarly, none of the measured cardiorespiratory variables--including heart rate (fH), blood pressure, air-breathing frequency (fV), O2 consumption (Mo2), CO2 excretion (Mco2), or blood gases--were influenced by acute aquatic hypoxia. In contrast, however, the rapid induction of aerial hypoxia (inspired Po2=46.6+/-3.3 mmHg) caused a marked increase in the circulating levels of A (from 7.9+/-2.0 to 18.8+/-6.1 nmol L(-1)) and NA (from 7.7+/-2.2 to 19.7+/-6.3 nmol L(-1)) that was accompanied by significant decreases in Mo2, arterial Po2 (Pao2), and arterial O2 concentration (Cao2). Air-breathing frequency was increased (by approximately five breaths per hour) during aerial hypoxia and presumably contributed to the observed doubling of pulmonary Mco2 (from 0.25+/-0.04 to 0.49+/-0.07 mmol kg(-1) h(-1)); fH and blood pressure were unaffected by aerial hypoxia. An in situ perfused heart preparation was used to test the possibility that catecholamine secretion from cardiac chromaffin cells was being activated by a direct localized effect of hypoxia. Catecholamine secretion from the chromaffin cells of the heart, while clearly responsive to a depolarizing concentration of KCl (60 mmol L(-1)), was unaffected by the O2 status of the perfusion fluid. The results of this study demonstrate that P. dolloi is able to mobilize stored catecholamines and increase f(V) during exposure to aerial hypoxia while remaining unresponsive to aquatic hypoxia. Thus, unlike in exclusively water-breathing teleosts, P. dolloi would appear to rely solely on internal/airway O2 chemoreceptors for initiating catecholamine secretion and cardiorespiratory responses.


Subject(s)
Catecholamines/blood , Chemoreceptor Cells/physiology , Fishes/physiology , Hypoxia/physiopathology , Oxygen Consumption/physiology , Respiration , Analysis of Variance , Animals , Blood Gas Analysis , Blood Pressure , Fishes/blood , Heart Rate , Hydrogen-Ion Concentration , Hypoxia/blood , Oxygen/metabolism , Paraganglia, Chromaffin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...