Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(10): 16757-16775, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36223228

ABSTRACT

Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine (ClinicalTrials.gov identifier: NCT05385991).


Subject(s)
Artificial Cells , COVID-19 , Mice , Cricetinae , Humans , Rabbits , Animals , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , Antibodies, Viral , SARS-CoV-2 , Membranes, Artificial , COVID-19/prevention & control , Mice, Inbred C57BL , Antibodies, Neutralizing , Immunoglobulin G
2.
Inorg Chem ; 60(3): 1823-1831, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33464875

ABSTRACT

A common challenge in Pt(IV) prodrug design is the limited repertoire of linkers available to connect the Pt(IV) scaffold with the bioactive payload. The commonly employed linkers are either too stable, leading to a linker artifact on the payload upon release, or too unstable, leading to premature release. In this study, we report the synthesis of a new class of Pt(IV) prodrugs using masked self-immolative 4-aminobenzyl linkers for controlled and traceless codrug delivery. Upon reduction of self-immolative Pt(IV) prodrugs, the detached axial ligands undergo decarboxylation and 1,6-elimination for payload release. Introduction of self-immolative linkers conferred good aqueous stability to the Pt(IV) codrug complex. Investigation revealed that efficient 1,6-elimination could be attributed to stabilization of the p-aza-quinone-methide intermediate. In particular, the self-immolative Pt(IV) prodrugs with cinnamate and coumarin derivatives were more potent than the coadministration of cisplatin with an unconjugated cinnamate or coumarin payload in vitro.


Subject(s)
Antineoplastic Agents/chemistry , Cisplatin/chemistry , Organoplatinum Compounds/chemistry , Prodrugs/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , Molecular Structure , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/pharmacology , Prodrugs/chemical synthesis , Prodrugs/pharmacology
3.
Pharmaceutics ; 11(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835682

ABSTRACT

With the well-known advantages of additive manufacturing methods such as three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has been successful in achieving regulatory approval in the past few years. Further research and development is required in this area to introduce more 3D printed products into the market. Our study investigates the potential of fixed dose combination solid dispersion drug products generated via 3D printing. Two model drugs-fluorescein sodium (FS) and 5-aminosalicyclic acid (5-ASA)-were impregnated onto a polyvinyl alcohol (PVA) filament, and the influence of solvent choice in optimal drug loading as well as other influences such as the physicochemical and mechanical properties of the resultant filaments were investigated prior to development of the resultant drug products. Key outcomes of this work included the improvement of filament drug loading by one- to threefold due to solvent choice on the basis of its polarity and the generation of a 3D-printed product confirmed to be a solid dispersion fixed dose combination with the two model drugs exhibiting favourable in vitro dissolution characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...