Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 6(4): 684-97, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24508460

ABSTRACT

Maintaining genome integrity requires the accurate and complete replication of chromosomal DNA. This is of the utmost importance for embryonic stem cells (ESCs), which differentiate into cells of all lineages, including germ cells. However, endogenous and exogenous factors frequently induce stalling of replication forks in every cell cycle, which can trigger mutations and chromosomal instabilities. We show here that the oncofetal, nonhistone chromatin factor HMGA2 equips cells with a highly effective first-line defense mechanism against endonucleolytic collapse of stalled forks. This fork-stabilizing function most likely employs scaffold formation at branched DNA via multiple DNA-binding domains. Moreover, HMGA2 works independently of other human factors in two heterologous cell systems to prevent DNA strand breaks. This fork chaperone function seemingly evolved to preserve ESC genome integrity. It is hijacked by tumor (stem) cells to also guard their genomes against DNA-damaging agents widely used to treat cancer patients.


Subject(s)
DNA Replication , Embryonic Stem Cells/metabolism , HMGA2 Protein/metabolism , Neoplasms/metabolism , Animals , Cell Line, Tumor , DNA Breaks, Double-Stranded , Genomic Instability , HMGA2 Protein/genetics , Humans , Mice , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...