Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(12): 13655-13665, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559998

ABSTRACT

Conjugated poly(alkoxythiophenes) such as poly(3,4-ethylenedioxythiophene) (PEDOT) have attracted considerable interest for use in a variety of applications such as biomedical devices, energy storage, and chemical sensing. Functionalized versions of the 3,4-ethylenedioxythiophene (EDOT) monomer make it possible to create polymers with properties tailored for specific applications. The maleimide functional group shows particular promise due to the wide variety of chemical modifications that it can undergo. Here, we examine the role that control of the chirality of the maleimide (MA) substituent has on the crystal structure and crystallization of the EDOT-MA monomer. We describe a method for the synthesis of a homochiral (S) variant of EDOT-MA and compare its crystallography, morphology, and thermal properties to that of the (R,S) EDOT-MA racemic compound. The conformation of the EDOT-MA molecule was substantially different, with the molecules adopting an "L" shape in the homochiral crystal, while in the racemic crystals, they were more colinear. The thermal stability of the homochiral crystals (Tm = 128.6 °C) was slightly higher than the racemic ones (Tm = 102.8 °C). We expect these results to be important in better understanding the solid-state assembly of the corresponding polymers prepared from these monomers.

2.
ACS Appl Mater Interfaces ; 14(37): 42289-42297, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36095248

ABSTRACT

Organic electrochemical transistors (OECTs) are promising bioelectronic devices, especially because of their ability to transport charge both ionically and electronically. Conductive polymers are typically used as the active materials of OECTs. Crosslinked, cast, and dried films of commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) suspensions are commonly and widely used for OECTs so far. Electrochemical polymerization of PEDOT from 3,4-ethylenedioxythiophene (EDOT) monomer can also be used to fabricate OECTs; however, this approach has not been investigated in as much detail. In particular, the role of various counterions that can be incorporated into the PEDOT films of OECTs has not been systematically studied. Here, we report the electrochemical fabrication and characterization of OECTs using PEDOT with several different counterion salts including lithium perchlorate (LiClO4), sodium p-toluene sulfonate (pTS), and poly(sodium 4-styrene sulfonate) (PSS). We found that the characteristic dimensions of PEDOT films deposited on the electrodes could be precisely controlled by total charge density, with a nominal thickness of about one micron requiring a current density of about 0.6 C/cm2 regardless of the choice of counterion. The films with the PSS counterion were relatively smooth, while PEDOT films prepared with the pTS and LiClO4 were much rougher due to the sizes of counterions. The PEDOT films with pTS and PSS grew along the substrate surface (in-plane direction) much faster than with LiClO4. The maximum transconductance (gm) of a PEDOT OECT was 46 mS with pTS as the counterion with the high on-current level (>10 mA) based on the large channel area. These results provide an effective and efficient way to fabricate OECTs with various monomers and additives as active materials in order to modify the device characteristics for further applications.

3.
MRS Commun ; 8(3): 1043-1049, 2018 Sep.
Article in English | MEDLINE | ID: mdl-34386296

ABSTRACT

The goal of this study was to perform in situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in peripheral nerves to create a soft, precisely located injectable conductive polymer electrode for bi-directional communication. Intraneural PEDOT polymerization was performed to target both outer and inner fascicles via custom fabricated 3D printed cuff electrodes and monomer injection strategies using a combination electrode-cannula system. Electrochemistry, histology, and laser light sheet microscopy revealed the presence of PEDOT at specified locations inside of peripheral nerve. This work demonstrates the potential for using in situ PEDOT electrodeposition as an injectable electrode for recording and stimulation of peripheral nerves.

SELECTION OF CITATIONS
SEARCH DETAIL
...