Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 94(10): e10786, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36217258

ABSTRACT

Bisphenol A (BPA) is one of the toxic chemicals, which is widely used for manufacturing epoxy, polyester resin, and polycarbonates. These materials are extensively used in manufacturing of reusable bottles, baby bottles, dental sealants, various medical devices, and so forth. Moreover, canned and packaged foods are sources of bisphenol A, which is unknowingly consumed by many people worldwide. Its endocrine disrupting and teratogenic properties impose potential risk to the wildlife and human health. BPA has been linked to reproductive, metabolic, and immunity disorders in humans. Regardless of BPA ban in reusable and baby bottles, annually, 15 billion pounds of BPA still being produced. BPA pollution and its cleanup are major challenges. Therefore, it is essential to develop a suitable strategy to bioremediate BPA. The Trametes versicolor (TV) laccase-based nanoemulsion calcium alginate bead organogel was able to transform 94% of BPA within 2 h of treatment. Organogel showed 60% of BPA removal from actual industrial wastewater in packed bed batch reactor and 67% of BPA removal in continuous flow packed bed reactor. The biological oxygen demand (BOD) of treated industrial effluent was 14 mg/L, which is very much less than untreated effluent's BOD, which was 48 mg/L. The chemical oxygen demand of industrial effluent was 1240 mg/ml, and treated effluent was 248 mg/L, respectively. Hence, application of nanoemulsion-based organogel in packed bed reactor found to be a potential candidate for the bioremediation of industrial effluent containing BPA. PRACTITIONER POINTS: The TV laccase-based nanoemulsion calcium alginate bead organogel was able to transform 94% of BPA. Organogel showed 67% of BPA removal from industrial wastewater in continuous flow packed bed reactor. The nanoemulsion-based organogel in packed bed reactor found to be potential candidate for the bioremediation of industrial effluent containing BPA.


Subject(s)
Laccase , Wastewater , Alginates , Benzhydryl Compounds , Biodegradation, Environmental , Laccase/metabolism , Phenols , Pit and Fissure Sealants/metabolism , Polyesters/metabolism , Polyporaceae , Trametes/metabolism , Wastewater/chemistry
2.
3 Biotech ; 11(6): 297, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136334

ABSTRACT

In recent times, there is increased public interest and indeed strong movement against the use of Bisphenol A (4,4'-(propane-2,2,-diphenol)) due to its endocrine disrupting properties. In the present study, biotransformation of Bisphenol A (BPA) was accomplished using Trametes versicolor laccase (E.C. 1.10.3.2) enzyme. The enzyme was entrapped in reverse micelles comprising of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) and 2,2,4-trimethylpentane (isooctane) for non-aqueous catalysis considering hydrophobicity of BPA. Screening of various parameters that may affect micellar system was carried out using Plackett-Burman experimental design and central composite design (Design Expert 11). According to Design Expert actual concentration of different variables was 0.55, 150 (Wo 30), 0.0035 mM and 175 µg/ml for Mg+2ions, Hydration ratio (Wo), 2,6-dimethoxyphenol (2,6 DMP, substrate) and laccase, respectively, at 40 °C and pH 4.5. Under these conditions laccase activity in reverse micelles was increased two folds as compared to unoptimized micellar system. It was evident that the reverse micelles diameter was linearly proportionated to the amount of laccase enzyme incorporated. BPA bioremediation mediated by laccase in non-aqueous environment was found to be 84% in 8 h of treatment. Biotransformation of BPA was monitored using GC-MS. BPA degraded products, such as BPA-O-catechol and 4,4 (Ethane 2-oxy 2-ol) diphenol were identified indicating transformation by oxidation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02842-4.

3.
3 Biotech ; 9(3): 100, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30800611

ABSTRACT

Forty-seven (47) mutant strains were generated from the wild-type fungus, Fusarium incarnatum strain LD-3 after exposure to ultraviolet radiation (UV) and a further seventeen (17) mutants were generated after exposure to ethyl methane sulfonate (EMS). Amongst these, the mutant strain, identified as UC-14, was the most promising laccase producer and produced threefold more laccase than the wild strain LD-3. Solid substrate tray fermentation using wheat straw and rice bran showed a twofold increase in laccase productivity and a fivefold loss of total organic matter (TOM) by mutant UC-14 over the wild strain LD-3. The mutant strain UC-14 also showed 25% and 54% weight loss of TOM after 36 days of fermentation which was 10% higher than the wild-type LD-3. Scanning electron microscopy suggested that the delayed condidiation in mutant strain UC-14 may be responsible for better laccase production.

4.
J Hazard Mater ; 254-255: 149-156, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23611799

ABSTRACT

Bisphenol A [2,2 bis (4 hydroxyphenyl) propane] is widely used in the variety of industrial and residential applications such as the synthesis of polymers including polycarbonates, epoxy resins, phenol resins, polyesters and polyacrylates. BPA has been recognized as an Endocrine Disrupting Chemicals (EDC), thus it is necessary to assess its biodegradability or fate in the natural environment. In general, environmental pollutant such as BPA does not dissolve in aqueous media, owing to their high hydrophobicity, and hence non-aqueous catalysis can be employed to enhance biodegradability of phenolic environmental pollutant. Purified laccase hosted in reverse micelles using ternary system of isooctane: AOT [Bis (2-ethylhexyl) sulphosuccinate sodium salt)]:water having hydration ratio (Wo) of 30 with protein concentration of 43.5 µg/ml was found to eliminate 91.43% of 200 ppm of Bisphenol A at 50 °C, pH-6.0 when incubated with laccase/Reverse Micelles system for 75 min. GC-MS analysis of isooctane soluble fractions detected the presence of 4,4'-(2 hydroxy propane 1,2 diyl) diphenol, bis (4-hydroxylphenyl) butenal and 2-(1-(4-hydroxyphenyl) vinyl) pent-2-enal indicated degradation of BPA by two oxidation steps and one ring opening step (C-C bond cleavage). Laccase/RM system exhibited several advantages for the oxidative degradation of hydrophobic phenols mainly because of the solubility of either enzyme or substrate was improved in organic media and the stable activity of laccase in organic media was achieved.


Subject(s)
Benzhydryl Compounds/metabolism , Endocrine Disruptors/metabolism , Laccase/metabolism , Phenols/metabolism , Biodegradation, Environmental , Catalysis , Fusarium/enzymology , Micelles
5.
J Basic Microbiol ; 50(1): 43-51, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20082375

ABSTRACT

Laccase production by solid state fermentation (SSF) using an indigenously isolated litter dwelling fungus Fusarium incarnatum LD-3 was optimized. Fourteen medium components were screened by the initial screening method of Plackett-Burman. Each of the components was screened on the basis of 'p' (probability value) which was above 95% confidence level. Ortho-dianisidine, thiamine HCl and CuSO(4) . 5 H(2)O were identified as significant components for laccase production. The Central Composite Design response surface methodology was then applied to further optimize the laccase production. The optimal concentration of these three medium components for higher laccase production were (g/l): CuSO(4) . 5 H(2)O, 0.01; thiamine HCl, 0.0136 and ortho-dianisidine, 0.388 mM served as an inducer. Wheat straw, 5.0 g was used as a solid substrate. Using this statistical optimization method the laccase production was found to increase from 40 U/g to 650 U/g of wheat straw, which was sixteen times higher than non optimized medium. This is the first report on statistical optimization of laccase production from Fusarium incarnatum LD-3.


Subject(s)
Culture Media/chemistry , Fusarium/enzymology , Industrial Microbiology , Laccase/biosynthesis , Copper Sulfate/metabolism , Dianisidine/metabolism , Fermentation , Models, Statistical , Thiamine/analogs & derivatives , Thiamine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...