Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e10949, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371859

ABSTRACT

Himalayan Musk deer, Moschus chrysogaster is widely distributed but one of the least studied species in Nepal. In this study, we compiled a total of 429 current presence points of direct observation of the species, pellets droppings, and hoofmarks based on field-based surveys during 2018-2021 and periodic data held by the Department of National Park and Wildlife Conservation. We developed the species distribution model using an ensemble modeling approach. We used a combination of bioclimatic, anthropogenic, topographic, and vegetation-related variables to predict the current suitable habitat for Himalayan Musk deer in Nepal. A total of 16 predictor variables were used for habitat suitability modeling after the multicollinearity test. The study shows that the 6973.76 km2 (5%) area of Nepal is highly suitable and 8387.11 km2 (6%) is moderately suitable for HMD. The distribution of HMD shows mainly by precipitation seasonality, precipitation of the warmest quarter, temperature ranges, distance to water bodies, anthropogenic variables, and land use and land cover change (LULC). The probability of occurrence is less in habitats with low forest cover. The response curves indicate that the probability of occurrence of HMD decreases with an increase in precipitation seasonality and remains constant with an increase in precipitation of the warmest quarter. Thus, the fortune of the species distribution will be limited by anthropogenic factors like poaching, hunting, habitat fragmentation and habitat degradation, and long-term forces of climate change.

2.
Ecol Evol ; 9(1): 4-18, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680091

ABSTRACT

Himalayan musk deer (Moschus leucogaster; hereafter musk deer) are endangered as a result of poaching and habitat loss. The species is nocturnal, crepuscular, and elusive, making direct observation of habitat use and behavior difficult. However, musk deer establish and repeatedly use the same latrines for defecation. To quantify musk deer habitat correlates, we used observational spatial data based on presence-absence of musk deer latrines, as well as a range of fine spatial-scale ecological covariates. To determine presence-absence of musk deer, we exhaustively searched randomly selected forest trails using a 20-m belt transect in different study sites within the Neshyang Valley in the Annapurna Conservation Area. In a subsequent way, study sites were classified as habitat or nonhabitat for musk deer. A total of 252 plots, 20 × 20 m, were systematically established every 100 m along 51 transects (each ~0.5 km long) laid out at different elevations to record a range of ecological habitat variables. We used mixed-effect models and principal component analysis to characterize relationships between deer presence-absence data and habitat variables. We confirmed musk deer use latrines in forests located at higher elevations (3,200-4,200 m) throughout multiple seasons and years. Himalayan birch (Betula utilis) dominated forest, mixed Himalayan fir (Abies spectabilis), and birch forest were preferred over pure Himalayan fir and blue pine (Pinus wallichiana) forest. Greater crown cover and shrub diversity were associated with the presence of musk deer whereas tree height, diameter, and diversity were weakly correlated. Topographical attributes including aspect, elevation, distance to water source, and slope were also discriminated by musk deer. Over- and understory forest management can be used to protect forests likely to have musk deer as predicted by the models to ensure long-term conservation of this rare deer.

SELECTION OF CITATIONS
SEARCH DETAIL
...