Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 997383, 2023.
Article in English | MEDLINE | ID: mdl-36999049

ABSTRACT

RNA sequencing (RNA-seq) has become an exemplary technology in modern biology and clinical science. Its immense popularity is due in large part to the continuous efforts of the bioinformatics community to develop accurate and scalable computational tools to analyze the enormous amounts of transcriptomic data that it produces. RNA-seq analysis enables genes and their corresponding transcripts to be probed for a variety of purposes, such as detecting novel exons or whole transcripts, assessing expression of genes and alternative transcripts, and studying alternative splicing structure. It can be a challenge, however, to obtain meaningful biological signals from raw RNA-seq data because of the enormous scale of the data as well as the inherent limitations of different sequencing technologies, such as amplification bias or biases of library preparation. The need to overcome these technical challenges has pushed the rapid development of novel computational tools, which have evolved and diversified in accordance with technological advancements, leading to the current myriad of RNA-seq tools. These tools, combined with the diverse computational skill sets of biomedical researchers, help to unlock the full potential of RNA-seq. The purpose of this review is to explain basic concepts in the computational analysis of RNA-seq data and define discipline-specific jargon.

3.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35753701

ABSTRACT

Advances in whole-genome sequencing (WGS) promise to enable the accurate and comprehensive structural variant (SV) discovery. Dissecting SVs from WGS data presents a substantial number of challenges and a plethora of SV detection methods have been developed. Currently, evidence that investigators can use to select appropriate SV detection tools is lacking. In this article, we have evaluated the performance of SV detection tools on mouse and human WGS data using a comprehensive polymerase chain reaction-confirmed gold standard set of SVs and the genome-in-a-bottle variant set, respectively. In contrast to the previous benchmarking studies, our gold standard dataset included a complete set of SVs allowing us to report both precision and sensitivity rates of the SV detection methods. Our study investigates the ability of the methods to detect deletions, thus providing an optimistic estimate of SV detection performance as the SV detection methods that fail to detect deletions are likely to miss more complex SVs. We found that SV detection tools varied widely in their performance, with several methods providing a good balance between sensitivity and precision. Additionally, we have determined the SV callers best suited for low- and ultralow-pass sequencing data as well as for different deletion length categories.


Subject(s)
Benchmarking , Genome, Human , Animals , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Whole Genome Sequencing/methods
6.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37496156

ABSTRACT

Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades' worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery.


Subject(s)
Armed Conflicts , Science , Humans , Ukraine
7.
ArXiv ; 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33948451

ABSTRACT

More than any other infectious disease epidemic, the COVID-19 pandemic has been characterized by the generation of large volumes of viral genomic data at an incredible pace due to recent advances in high-throughput sequencing technologies, the rapid global spread of SARS-CoV-2, and its persistent threat to public health. However, distinguishing the most epidemiologically relevant information encoded in these vast amounts of data requires substantial effort across the research and public health communities. Studies of SARS-CoV-2 genomes have been critical in tracking the spread of variants and understanding its epidemic dynamics, and may prove crucial for controlling future epidemics and alleviating significant public health burdens. Together, genomic data and bioinformatics methods enable broad-scale investigations of the spread of SARS-CoV-2 at the local, national, and global scales and allow researchers the ability to efficiently track the emergence of novel variants, reconstruct epidemic dynamics, and provide important insights into drug and vaccine development and disease control. Here, we discuss the tremendous opportunities that genomics offers to unlock the effective use of SARS-CoV-2 genomic data for efficient public health surveillance and guiding timely responses to COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...