Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Food Chem ; 442: 138457, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38271903

ABSTRACT

This work presents a straightforward approach to the separation d/l-carnitine (d/l-Carn) using ion mobility-mass spectrometry (IM-MS) and theoretical calculations. Natamycin (Nat) was used as separation reagent to interact with the Carn, metal ions (G) were employed as ligand, the resultant ternary complexes [d/l-Carn + Nat + G]+ were observed experimentally. IM-MS results revealed that d/l-Carn could be baseline separated via complex formation using Li+, Na+, K+, Rb+, and Cs+, with a maximum peak separation resolution (Rp-p) of 2.91; Theoretical calculations were performed to determine the optimal conformations of [d/l-Carn + Nat + Li/K]+, and the predicted collisional cross section values were consistent with the experimental values. Conformational analysis was used to elucidate the enantiomeric separation of d/l-Carn at the molecular level via the formation of ternary complexes. Furthermore, quantitative analyses for the determination of the enantiomers were established with effective linearity and acceptable sensitivity. Finally, the proposed method was successfully applied in the determination of d/l-Carn in food samples.


Subject(s)
Carnitine , Ion Mobility Spectrometry , Ions
2.
Talanta ; 269: 125467, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042140

ABSTRACT

Exosomal glycoproteins play a significant role in many physiological and pathological processes. However, the detection of exosome surface glycans is currently challenged by the complexity of biological samples or the sensitivity of the methods. Herein, we prepared a novel fluorescent probe of biotin-functionalized nanocrystals (denoted as CdTe@cys-biotin) and applied it for the first time for the detection of the expression of exosomal surface glycans using a fluorescence amplification strategy. First, the dual affinity of TiO2 and CD63 aptamers of Fe3O4@TiO2-CD63 was utilized to rapidly and efficiently capture exosomes within 25 min. In this design, interference from other vesicles and soluble impurities can be avoided due to the dual recognition strategy. The chemical oxidation of NaIO4 oxidized the hydroxyl sites of exosomal surface glycans to aldehydes, which were then labeled with aniline-catalyzed biotin hydrazide. Using the high affinity between streptavidin and biotin, streptavidin-FITC and probes were successively anchored to the glycans on the exosomes. The fluorescent probe achieved the dual function of specific recognition and fluorescent labeling by modifying biotin on the surface of nanocrystals. This method showed excellent specificity and sensitivity for exosomes at concentrations ranging from 3.30 × 102 to 3.30 × 106 particles/mL, with a detection limit of 121.48 particles/mL. The fluorescent probe not only quantified exosomal surface glycans but also distinguished with high accuracy between serum exosomes from normal individuals and patients with kidney disease. In general, this method provides a powerful platform for sensitive detection of exosomes in cancer diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cadmium Compounds , Exosomes , Quantum Dots , Humans , Fluorescence , Cadmium Compounds/analysis , Biotin/metabolism , Streptavidin/metabolism , Exosomes/chemistry , Fluorescent Dyes/chemistry , Tellurium , Polysaccharides/analysis , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry
3.
Phys Chem Chem Phys ; 25(46): 32173-32183, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37986618

ABSTRACT

Infrared photodissociation spectroscopy has been used to investigate CrFe(CO)n- (n = 4-9) clusters in the gas phase. Comparison of the observed spectra in the carbonyl stretching frequency region with those predicted for low-lying isomers by DFT calculations showed that the observed CrFe(CO)n- (n = 4-8) clusters could be characterized to have Cr-Fe bonded (OC)4Fe-Cr(CO)n-4 structures. The coexistence of isomers with the (OC)Fe-Cr(CO)5 and (OC)3Fe-Cr(CO)4 structures was also observed for CrFe(CO)6- and CrFe(CO)7- anions, respectively. The CrFe(CO)n- (n = 4-8) complexes were strongly bonded systems. The CrFe(CO)8- complex was a coordination-saturated cluster, and the CrFe(CO)9- anion was characterized to contain a CrFe(CO)8- core tagged by one CO molecule. Bonding analysis revealed that the Cr-Fe bonds in the CrFe(CO)n- (n = 4-8) clusters were predominantly σ-type single bonds. The iron center in the Fe(CO)4 moiety and the chromium center in the Cr(CO)5 moiety fulfilled the 18-electron configuration for the CrFe(CO)n- (n = 4-6) clusters. As in the CrFe(CO)n- (n = 7, 8) complexes, the iron center in the Fe(CO)4 moiety exhibited a 17-electron configuration, while the chromium center in the Cr(CO)4 moiety exhibited a 16-electron configuration. These findings provide valuable insights into the structure and bonding mechanism of heterometallic carbonyl clusters.

4.
J Chem Phys ; 157(5): 054301, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35933208

ABSTRACT

Uranium nitride-oxide cations [NUO]+ and their complexes with equatorial N2 ligands, [NUO·(N2)n]+ (n = 1-7), were synthesized in the gas phase. Mass-selected infrared photodissociation spectroscopy and quantum chemical calculations confirm [NUO·(N2)5]+ to be a sterically fully coordinated cation, with electronic singlet ground state of 1A1, linear [NUO]+ core, and C5v structure. The presence of short N-U bond distances and high stretching modes, with slightly elongated U-O bond distances and lowered stretching modes, is rationalized by attributing them to cooperative covalent and dative [ǀN≡U≡Oǀ]+ triple bonds. The mutual trans-interaction through flexible electronic U-5f6d7sp valence shell and the linearly increasing perturbation with increase in the number of equatorial dative N2 ligands has also been explained, highlighting the bonding characteristics and distinct features of uranium chemistry.

5.
Anal Chem ; 94(35): 12213-12220, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36008361

ABSTRACT

Fatty acids play a pivotal role in biological processes and have many isomers, particularly at the C═C position, that influence their biological function. Distinguishing between isomers is crucial to investigating their role in health and disease. However, separating the isomers poses a significant analytical challenge. In this study, we developed a simple and rapid strategy combining ion mobility spectrometry and theoretical chemical calculations to differentiate and quantify the C═C positional isomers in 2-/3-butenoic acid (BA), 2-/3-/4-pentenoic acid (PA), and 2-/3-/5-hexenoic acid (HA). C═C positional isomerism was mobility-differentiated by simple complexation with crown ethers (12C4, 15C5, and 18C6) and divalent metal ions (Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Sr2+, and Ba2+), that is, converting C═C positional isomers with small structural differences into complexes with large structural differences through the interaction with metal ions and crown ethers. Metallized isomers were formed but could not be differentiated due to their complex and overlapping extracted ion mobiliograms (EIMs). Binary crown ether-isomer complexes were not observed, indicating that C═C positional isomers could not be separated by simple mixing with crown ethers. However, significant EIM differences were obtained for the formed ternary complexes, allowing baseline separation for the isomers. Notably, all crown ethers and metal ions have a separation effect with the isomers, with a calculated separation resolution (Rp-p) of 0.07-2.44. Theoretical chemical calculations were performed to provide in-depth structural information for the complexes and explain the separation principle. Theoretical conformational space showed that the divalent metal ions act as a bridge connecting the crown ether and the isomer. Additionally, the ternary complex becomes more compact as the distance between C═C and -COOH increases. Theoretical results can reflect the features of mobility experiments, with relative errors between the experiment collision cross-section (CCS) and theoretical CCS of no more than ±8.06%. This method was also evaluated in terms of quantification, accuracy, and precision repeatability. Overall, this study establishes that the crown ether-metal ion pair can function as a robust unit for differentiating C═C positional isomerism.


Subject(s)
Crown Ethers , Crown Ethers/chemistry , Fatty Acids , Ions , Isomerism , Metals , Molecular Conformation
6.
Phys Chem Chem Phys ; 23(22): 12668-12678, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34036991

ABSTRACT

Heteronuclear group 15 metal-iron carbonyl cluster complexes of AmFe(CO)n- (A = Sb, Bi; m, n = 2-3) were generated in the gas phase and studied by infrared photodissociation spectroscopy in the carbonyl stretching region. Their structures were determined by comparing the experimental spectra with predicted spectra derived from DFT calculations at the B3LYP and BP86 levels. All of the AmFe(CO)n- cluster anions were determined to have Fe(CO)n- fragments with all of the CO ligands terminally bonded to the iron center, and they can be regarded as being formed via the interactions of the neutral group 15 metal clusters with the Fe(CO)n- fragments. Bonding analyses indicated that each A2Fe(CO)n- (n = 2, 3) cluster anion contained two A-Fe single bonds and one A-A double bond. Each A3Fe(CO)n- (n = 2, 3) cluster anion involved three A-Fe single bonds and three A-A single bonds. There is an isolobal relationship between the Fe(CO)3- group and the group 15 atoms. The substitution of an Fe(CO)3- group in place of one A atom in the tetrahedral A4 molecule resulted in an A3Fe(CO)3- cluster anion with the closed-shell electronic configuration for all the group 15 metals and iron atoms.

7.
J Phys Chem A ; 124(6): 1158-1166, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-31951126

ABSTRACT

Heteronuclear arsenic-iron carbonyl cluster anions AsmFe(CO)n- (m, n = 2, 3) have been generated in the gas phase and investigated by mass-selected infrared photodissociation spectroscopy and density functional theory calculations at the B3LYP/BP86/TPSS levels. All the AsmFe(CO)n- (m, n = 2, 3) cluster anions are determined to contain Fe(CO)n- fragments, which can be regarded as being formed by replacing one arsenic atom of the arsenic clusters Asm+1 with the Fe(CO)n- group. Bonding analyses indicated that each As2Fe(CO)n- (n = 2, 3) cluster anion involves two Fe-As single bonds and one As-As double bond. Each As3Fe(CO)n- (n = 2, 3) cluster anion has three Fe-As single bonds and three As-As single bonds. The Fe(CO)3- group with a 15-electron configuration is valence isoelectronic to the As atom and can serve as a building block for forming heteronuclear arsenic-iron carbonyl clusters.

8.
Angew Chem Int Ed Engl ; 59(6): 2344-2348, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31769913

ABSTRACT

Heteronuclear Group 3 metal/iron carbonyl anion complexes ScFe(CO)3 - , YFe(CO)3 - , and LaFe(CO)3 - are prepared in the gas phase and studied by mass-selective infrared (IR) photodissociation spectroscopy as well as quantum-chemical calculations. All three anion complexes are characterized to have a metal-metal-bonded C3v equilibrium geometry with all three carbonyl ligands bonded to the iron center and a closed-shell singlet electronic ground state. Bonding analyses reveal that there are multiple bonding interactions between the bare group-3 elements and the Fe(CO)3 - fragment. Besides one covalent electron-sharing metal-metal σ bond and two dative π bonds from Fe to the Group 3 metal, there is additional multicenter covalent bonding with the Group 3 atom bonded to Fe and the carbon atoms.

9.
Nat Commun ; 10(1): 4713, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624260

ABSTRACT

While main group elements have four valence orbitals accessible for bonding, quadruple bonding to main group elements is extremely rare. Here we report that main group element boron is able to form quadruple bonding interactions with iron in the BFe(CO)3- anion complex, which has been revealed by quantum chemical investigation and identified by mass-selected infrared photodissociation spectroscopy in the gas phase. The complex is characterized to have a B-Fe(CO)3- structure of C3v symmetry and features a B-Fe bond distance that is much shorter than that expected for a triple bond. Various chemical bonding analyses indicate that the complex involves unprecedented B≣Fe quadruple bonding interactions. Besides the common one electron-sharing σ bond and two Fe→B dative π bonds, there is an additional weak B→Fe dative σ bonding interaction. This finding of the new quadruple bonding indicates that there might exist a wide range of boron-metal complexes that contain such high multiplicity of chemical bonds.

10.
Chemistry ; 25(50): 11772-11784, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31276242

ABSTRACT

The octacarbonyl cation and anion complexes of actinide metals [An(CO)8 ]+/- (An=Th, U) are prepared in the gas phase and are studied by mass-selected infrared photodissociation spectroscopy. Both the octacarbonyl cations and anions have been characterized to be saturated coordinated complexes. Quantum chemical calculations by using density functional theory show that the [Th(CO)8 ]+ and [Th(CO)8 ]- complexes have a distorted octahedral (D4h ) equilibrium geometry and a doublet electronic ground state. Both the [U(CO)8 ]+ cation and the [U(CO)8 ]- anion exhibit cubic structures (Oh ) with a 6 A1g ground state for the cation and a 4 A1g ground state for the anion. The neutral species [Th(CO)8 ] (Oh ; 1 A1g ) and [U(CO)8 ] (D4h ; 5 B1u ) have also been calculated. Analysis of their electronic structures with the help on an energy decomposition method reveals that, along with the dominating 6d valence orbitals, there are significant 5f orbital participation in both the [An]←CO σ donation and [An]→CO π back donation interactions in the cations and anions, for which the electronic reference state of An has both occupied and vacant 5f AOs. The trend of the valence orbital contribution to the metal-CO bonds has the order of 6d≫5f>7s≈7p, with the 5f orbitals of uranium being more important than the 5f orbitals of thorium.

11.
Chem Commun (Camb) ; 55(40): 5685-5688, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31020278

ABSTRACT

Heteronuclear transition-metal-main-group element carbonyl anion complexes of AFe(CO)3- (A = Ge, Sn, and Pb) are prepared using a laser vaporization supersonic ion source in the gas phase, which were studied by mass-selected infrared (IR) photodissociation spectroscopy. The geometric and electronic structures of the experimentally observed species are identified by a comparison of the measured and calculated IR spectra. These anion complexes have a 2A1 doublet electronic ground state and feature an A[triple bond, length as m-dash]Fe triply bonded C3v structure with all of the carbonyl ligands bonded at the iron center. Bonding analyses of AFe(CO)3- (A = C, Si, Ge, Sn, Pb, and Fl) indicate that the complexes are triply bonded between the valence np atomic orbitals of bare group-14 atoms and the hybridized 3d and 4p atomic orbitals of iron.

12.
Angew Chem Int Ed Engl ; 58(6): 1732-1738, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30548753

ABSTRACT

The alkali metal-nickel carbonyl anions ENi(CO)3 - with E=Li, Na, K, Rb, Cs have been produced and characterized by mass-selected infrared photodissociation spectroscopy in the gas phase. The molecules are the first examples of 18-electron transition metal complexes with alkali atoms as covalently bonded ligands. The calculated equilibrium structures possess C3v geometry, where the alkali atom is located above a nearly planar Ni(CO)3 - fragment. The analysis of the electronic structure reveals a peculiar bonding situation where the alkali atom is covalently bonded not only to Ni but also to the carbon atoms.

13.
Angew Chem Int Ed Engl ; 57(2): 542-546, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29193525

ABSTRACT

Heteronuclear transition-metal-main-group-element carbonyl complexes of AsFe(CO)3- , SbFe(CO)3- , and BiFe(CO)3- were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass-selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3- . Chemical bonding analyses on the whole series of AFe(CO)3- (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp-p) type of transition-metal-main-group-element multiple bonding. The σ-type three-orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3- (A=As, Sb, Bi) complexes.

14.
Angew Chem Int Ed Engl ; 56(45): 14096-14101, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28891102

ABSTRACT

Infrared photodissociation spectroscopy of mass-selected heteronuclear cluster anions in the form of OMFe(CO)5- (M=Sc, Y, La) indicates that all these anions involve an 18-electron [Fe(CO)4 ]2- building block that is bonded with the M center through two bridged carbonyl ligands. The OLaFe(CO)5- anion is determined to be a CO-tagged complex involving a [Fe(CO)4 ]2- [LaO]+ anion core. In contrast, the OYFe(CO)5- anion is characterized to have a [Fe(CO)4 ]2- [Y(η2 -CO2 )]+ structure involving a side-on bonded CO2 ligand. The CO-tagged complex and the [Fe(CO)4 ]2- [Sc(η2 -CO2 )]+ isomer co-exist for the OScFe(CO)5- anion. These observations indicate that both the ScO+ and YO+ cations supported on [Fe(CO)4 ]2- are able to oxidize CO to CO2 . Theoretical analyses show that [Fe(CO)4 ]2- coordination significantly weakens the MO+ bond and decreases the energy gap of the interacting valence orbitals between MO+ and CO, leading to the CO oxidation reactions being both thermodynamically exothermic and kinetically facile.

15.
Angew Chem Int Ed Engl ; 56(24): 6932-6936, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28485836

ABSTRACT

We report the preparation of UFe(CO)3- and OUFe(CO)3- complexes using a laser-vaporization supersonic ion source in the gas phase. These compounds were mass-selected and characterized by infrared photodissociation spectroscopy and state-of-the-art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe-to-U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(-II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df-d multiple-bonded f-element-transition-metal compounds that have not been fully recognized to date.

16.
J Phys Chem A ; 119(18): 4142-50, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25871820

ABSTRACT

Mass-selected heteronuclear iron-copper carbonyl cluster anions CuFe(CO)n(-) (n = 4-7) are studied by infrared photodissociation spectroscopy in the carbonyl stretching frequency region in the gas phase. The cluster anions are produced via a laser vaporization supersonic cluster ion source. Their geometric structures are determined by comparison of the experimental spectra with those calculated by density functional theory. The experimentally observed CuFe(CO)n(-) (n = 4-7) cluster anions are characterized to have (OC)4Fe-Cu(CO)n-4 structures, each involving a C3v symmetry Fe(CO)4(-) building block. Bonding analysis indicates that the Fe-Cu bond in the CuFe(CO)n(-) (n = 4-7) cluster anions is a σ type single bond with the iron center possessing the most favored 18-electron configuration. The results provide important new insight into the structure and bonding of hetronuclear transition metal carbonyl cluster anions.

17.
J Phys Chem A ; 118(15): 2719-27, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24673590

ABSTRACT

Infrared spectra of mass-selected homoleptic cobalt carbonyl cluster cations including dinuclear Co2(CO)8(+) and Co2(CO)9(+), trinuclear Co3(CO)10(+) and Co3(CO)11(+), as well as tetranuclear Co4(CO)12(+) are measured via infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The geometric structures of these complexes are determined by comparison of the experimental spectra with those calculated by density functional theory. The Co2(CO)8(+) cation is characterized to have a Co-Co bonded structure with Cs symmetry involving a bridging CO ligand. The Co2(CO)9(+) cation is determined to be a mixture of the CO-tagged Co2(CO)8(+)-CO complex and the Co(CO)5(+)-Co(CO)4 ion-molecular complex. The Co3(CO)10(+) cation is the coordination-saturated trinuclear cluster, which is characterized to have a triangle Co3 core with C2 symmetry involving two edge-bridging and eight terminal CO ligands. The Co3(CO)11(+) cation is a weakly bound complex involving a Co3(CO)10(+) core ion. The Co4(CO)12(+) cluster cation is deduced to have a tetrahedral Co4(+) core structure with three edge-bridging and nine terminal carbonyls.

18.
J Phys Chem A ; 117(33): 7810-7, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23895186

ABSTRACT

Infrared spectra of mass-selected homoleptic copper carbonyl cluster cations including dinuclear Cu2(CO)6(+) and Cu2(CO)7(+), trinuclear Cu3(CO)7(+), Cu3(CO)8(+), and Cu3(CO)9(+), and tetranuclear Cu4(CO)8(+) are measured via infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The structures are established by comparison of the experimental spectra with simulated spectra derived from density functional calculations. The Cu2(CO)6(+) cation is characterized to have an unbridged D3d structure with a Cu-Cu half bond. The Cu2(CO)7(+) cation is determined to be a weakly bound complex involving a Cu2(CO)6(+) core ion. The trinuclear Cu3(CO)7(+) and Cu3(CO)8(+) cluster cations are determined to have triangle Cu3 core structures with C2 symmetry involving two Cu(CO)3 groups and one Cu(CO)x group (x = 1 or 2). In contrast, the trinuclear Cu3(CO)9(+) cluster cation is determined to have an open chain-like (OC)3Cu-Cu(CO)3-Cu(CO)3 structure. The tetranuclear Cu4(CO)8(+) cluster cation is characterized to have a tetrahedral Cu4(+) core structure with all carbonyl groups terminally bonded.

19.
Phys Chem Chem Phys ; 15(25): 10224-32, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23443816

ABSTRACT

Infrared spectra of mass-selected homoleptic nickel carbonyl cluster cations including dinuclear Ni2(CO)7(+) and Ni2(CO)8(+), trinuclear Ni3(CO)9(+) and tetranuclear Ni4(CO)11(+) are measured via infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The structures are established by comparison of the experimental spectra with simulated spectra derived from density functional calculations. The Ni2(CO)7(+) cation is characterized to have an unbridged asymmetric (OC)4Ni-Ni(CO)3(+) structure with a Ni-Ni single bond. The Ni2(CO)8(+) cation has a Ni-Ni half-bonded D3d structure with both nickel centers exhibiting an 18-electron configuration. The trinuclear Ni3(CO)9(+) cluster cation is determined to have an open chain like (OC)4Ni-NiCO-Ni(CO)4 structure. The tetranuclear Ni4(CO)11(+) cluster cation is determined to have a tetrahedral structure with two-center and three-center bridge-bonded carbonyl units. These nickel carbonyl cluster cations all involve trigonal pyramid like Ni(CO)4 building blocks that satisfy the 18-electron configuration of the nickel centers.

20.
J Phys Chem A ; 116(10): 2484-9, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22360767

ABSTRACT

The infrared photodissociation spectroscopy of mass-selected mononuclear iron carbonyl anions Fe(CO)(n)(-) (n = 2-8) were studied in the carbonyl stretching frequency region. The FeCO(-) anion does not fragment when excited with infrared light. Only a single IR active band was observed for the Fe(CO)(2)(-) and Fe(CO)(3)(-) anions, consistent with theoretical predictions that these complexes have linear D(∞h) and planar D(3h) symmetry, respectively. The Fe(CO)(4)(-) anion is the most intense peak in the mass spectra and was characterized to have a completed coordination sphere with high stability. Anion clusters larger than n = 4 were determined to involve a Fe(CO)(4)(-) core anion that is progressively solvated by external CO molecules. Three CO stretching vibrational fundamentals were observed for the Fe(CO)(4)(-) core anion, indicating that the Fe(CO)(4)(-) anion has a C(3v) structure. All the carbonyl stretching frequencies of the Fe(CO)(n)(-) anion complexes are red-shifted with respect to those of the corresponding neutrals.

SELECTION OF CITATIONS
SEARCH DETAIL
...