Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Adhes Dent ; 26(1): 65-78, 2024 Jan 15.
Article in German | MEDLINE | ID: mdl-38379400

ABSTRACT

PURPOSE: Multiple materials are found in the root canal after fiber-post cementation. The layer of a bioceramic-based (BC) sealer may affect the bond strength (σBS) of the fiber post in the root canal. The purpose of this study was to employ multilayer compos-ite-disk models in diametral compression to investigate whether the bond strength between a fiber post and root dentin can be in-creased by the application of a primer on the BC sealer. MATERIALS AND METHODS: The multilayers of materials in the root canal required 3D finite-element (FE) stress analyses (FEA) to pro-vide precise σBS values. First, BC sealer was characterized using x-ray powder diffraction (XRD) to determine when the sealer com-pletely set and the types of crystals formed to select which primer to apply to the sealer. We selected a 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-based primer to treat the BC sealer before post cementation. Ultra-highspeed (UHS) imaging was utilized to analyze the crack initiation interface. The obtained failure force was used in FE analysis to calculate σBS. RESULTS: UHS imaging validated the fracture interface at the post-dentin junction as FEA simulations predicted. σBS values of the fiber posts placed with various material combinations in the root canal were 21.1 ± 3.4 (only cement/ post), 22.2 ± 3.4 (BC sealer/cement/post) and 28.6 ± 4.3 MPa (10-MDP primer treated BC sealer/cement/post). The 10-MDP-treated BC sealer exhibited the highest σBS (p < 0.05). CONCLUSION: The multilayer composite disk model proved reliable with diametral compression testing. The presence of BC sealer in the root canal does not reduce σBS of the fiber post. Conditioning the BC sealer layer with 10-MDP primer before fiber-post cemen-tation increases σBS.


Subject(s)
Dental Bonding , Methacrylates , Root Canal Filling Materials , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacology , Epoxy Resins/chemistry , Epoxy Resins/pharmacology , Dental Pulp Cavity , Materials Testing , Dentin
2.
Int J Periodontics Restorative Dent ; 44(2): 197-203, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-37471157

ABSTRACT

Autotransplantation has been proven as a viable method of reconstructing missing teeth. While preparing the recipient site, the bone reduction location depends largely on the surgeon's experience. Inappropriate overpreparation can cause biologic and esthetic complications, such as buccal or lingual bone resorption. This paper provides an innovative method to aid clinicians in precisely preparing a recipient site with the assistance of medical image-processing software and a real-time navigation system. This case report presents the autotransplantation of a mandibular molar using this technique with good short-term (6 months) clinical outcomes, including radiographic bone fill, normal probing pocket depth, physiologic tooth mobility, acceptable gingival level, and satisfactory restoration.


Subject(s)
Tooth , Humans , Transplantation, Autologous , Molar , Tooth Root , Gingiva
3.
J Prosthodont Res ; 68(2): 255-263, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37197947

ABSTRACT

PURPOSE: To assess the effects of ceramic thickness, ceramic translucency, and light transmission on restorative composites used as luting cement for lithium disilicate-based ceramics. METHODS: Four luting types of cement were tested (n=8); a dual-cured resin cement (Multilink N), a light-cured conventional flowable composite (Tetric N-Flow), and two light-cured bulk-fill flowable composites (Tetric N-Flow Bulk Fill and X-tra base). The 20 s- or 40 s-light (1000 mW/cm2) was transmitted through 1- or 2-mm-thick high- or low-translucency (HT- or LT-) ceramic discs (IPS e.Max press) to reach the 1-mm-thick luting cement. Light transmitted to cement without ceramic served as a control. Vickers hardness number (VHN), flexural strength (FS), fractography, and degree of conversion (DC) were evaluated. One-way and multi-way analysis of variance was conducted to determine the effects of factors on VHN and FS. RESULTS: Ceramic thickness, light transmission time, and cement type significantly affected the VHN of the luting cement (P < .000). Only Multilink N (LT- and HT-1mm) and Tetric N-Flow (HT-1mm) reached 90% VHN of corresponding control by 20 s-light transmissions, but Tetric N-Flow exhibited lowest VHN and approximately 1/3-1/2 VHN of Multilink N (P < 0.05). X-tra base expressed superior physicochemical properties to Tetric N-Flow Bulk Fill (P < 0.05) and reached >90% VHN of control in all conditions with 40 s-light transmissions except for LT-2 mm. DC, FS, and fractography supported these findings. CONCLUSIONS: The light-cured bulk-fill composite served as a luting cement for lithium-disilicate-based ceramics in a product-dependent manner. Light transmission time is crucial to ensure sufficient luting cement polymerization.


Subject(s)
Ceramics , Dental Porcelain , Dental Porcelain/chemistry , Ceramics/chemistry , Dental Cements , Resin Cements/chemistry , Hardness , Materials Testing , Surface Properties
4.
Dent Mater ; 40(1): 102-110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37919112

ABSTRACT

OBJECTIVES: This study aimed to enhance the bond strength between Biodentine™ (BD), a bioactive tricalcium silicate (C3S) based material, and resin composite through various surface treatments. METHODOLOGY: BD samples were immersed in either double distilled water or Hank's Balanced Salt Solution and analyzed using X-ray Diffraction (XRD). Shear bond strength (SBS) evaluations of BD were performed using Prime & Bond™ NT (PNT), Single Bond Universal (SBU), Xeno V (Xeno), and glass ionomer cement (GIC) following various etching durations (0 s/ 15 s/ 30 s/ 60 s with 37.5% phosphoric acid). Two primers, RelyX™ Ceramic Primer (RCP) and Monobond ™ Plus (MBP), were chosen to prime BD for SBS enhancement. Fractography and bonding interfaces were examined with energy dispersive X-ray spectroscopy (EDS)/ scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). RESULTS: XRD confirmed BD's main compositions as C3S, Ca(OH)2, CaCO3 and ZrO2 after 14 days crystal maturation. Etched BD did not improve SBS. GIC exhibited the lowest SBS (p < 0.05) among all adhesives, regardless of the etching mode (all < 1 MPa). The highest SBS (17.5 ± 3.6 MPa, p < 0.05) was achieved when BD primed with MBP followed by SBU application. FTIR and EDS showed γ-MPTS and10-MDP within the MBP primer interacted with C3S and ZrO2 of BD, achieving enhanced SBS. Most specimens exhibited mixed or cohesive failure modes. Significance BD's subpar mechanical properties and texture may contribute to its poor adhesion to resin composite. Pretreating BD with MBP primer, followed by SBU adhesive is recommended for improving bond strength.


Subject(s)
Dental Bonding , Resin Cements , Resin Cements/chemistry , Surface Properties , Dental Materials/chemistry , Composite Resins/chemistry , Glass Ionomer Cements , Shear Strength , Materials Testing
6.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047794

ABSTRACT

1-Isothiocyanato-6-(methylsulfinyl)-hexanate (6-MITC) is a natural compound found in Wasabia japonica. The synthetic derivatives 1-Isothiocyanato-6-(methylsulfenyl)-hexane (I7447) and 1-Isothiocyanato-6-(methylsulfonyl)-hexane (I7557) were obtained from 6-MITC by deleting and adding an oxygen atom to the sulfone group, respectively. We previously demonstrated that extensive mitotic arrest, spindle multipolarity, and cytoplasmic vacuole accumulation were induced by 6-MITC and inhibited the viability of human chronic myelogenous leukemia K562 cells. In this study, we examined the anti-cancer effects of 6-MITC derivatives on human chronic myelogenous leukemia (CML) cells. Autophagy was identified as the formation of autophagosomes with double-layered membranes using transmission electron microscopy. Cell cycle and differentiation were analyzed using flow cytometry. Apoptosis was detected by annexin V staining. After treatment with I7447 and I7557, the G2/M phase of cell cycle arrest was revealed. Cell death can be induced by a distinct mechanism (the simultaneous occurrence of autophagy and aberrant mitosis). The expression levels of acridine orange were significantly affected by lysosomal inhibitors. The natural wasabi component, 6-MITC, and its synthetic derivatives have similar effects on human chronic myelogenous leukemia cells and may be developed as novel therapeutic agents against leukemia.


Subject(s)
Hexanes , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Oxygen , Isothiocyanates/pharmacology , K562 Cells , Apoptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
7.
Cancers (Basel) ; 14(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36230769

ABSTRACT

Immunotherapy modulating the tumor microenvironment (TME) immune function has a promising effect on various types of cancers, but it remains as a limited efficacy in colon cancer. Midostaurin (PKC412) has been used in the clinical treatment of fms-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia and has demonstrated immunomodulatory activity. We aimed to evaluate the effect of midostaurin on the modulation of TME and the efficacy of anti-programmed cell death protein 1 (PD-1) against colon cancer. Midostaurin inhibited the growth of murine CT26 and human HCT116 and SW480 cells with multinucleation and micronuclei formation in morphology examination. The cell cycle arrested in the G2/M phase and the formation of the polyploid phase was noted. The formation of cytosolic DNA, including double-strand and single-strand DNA, was increased. Midostaurin increased mRNA expressions of cGAS, IRF3, and IFNAR1 in colorectal adenocarcinoma cells and mouse spleen macrophages. The protein expressions of Trex-1, c-KIT, and Flt3, but not PKCα/ß/γ and VEGFR1, were down-regulated in midostaurin-treated colorectal adenocarcinoma cells and macrophages. Trex-1 protein expression was abrogated after FLT3L activation. In vivo, the combination of midostaurin and anti-PD-1 exhibited the greatest growth inhibition on a CT26-implanted tumor without major toxicity. TME analysis demonstrated that midostaurin alone decreased Treg cells and increased neutrophils and inflammatory monocytes. NKG2D+ and PD-1 were suppressed and M1 macrophage was increased after combination therapy. When combined with anti-PD-1, STING and INFß protein expression was elevated in the tumor. The oral administration of midostaurin may have the potential to enhance anti-PD-1 efficacy, accompanied by the modulation of cytosolic DNA-sensing signaling and tumor microenvironment.

8.
Biomater Adv ; 140: 213045, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35939956

ABSTRACT

Vital pulp therapy (VPT) has gained significant consideration by utilizing the natural healing capacity of the inflamed pulp in healing process. However, the protective pulp capping materials that facilitate this healing process are still under investigation for the successful promotion of dentin-pulp regeneration. Herein, we developed a bioactive and biodegradable pulp capping material (denoted as sCSHA-GFs) by synthesizing inorganic submicron calcium sulfate hemihydrate (sCS)/porous hydroxyapatite (HA) loaded with growth factors (GFs) such as transforming growth factor-beta 1 (TGF-ß1), fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Physiochemical characteristics of submicron CSHA-GFs (sCSHA-GFs) cement were determined. Human dental pulp stem cells (hDPSCs) were used for analyzing their biocompatibility and bioactivity for dentin mineralization. To evaluate the efficacy of sCSHA-GFs, we compared it with a commercial material, mineral trioxide aggregate (MTA), the reference standard used clinically on pulp capping. Our results showed that sCSHA-GFs cement presented good biodegradability with dissolution properties for sustained release of calcium (Ca2+) ions and GFs, and facilitated attachment, proliferation, differentiation and migration of hDPSCs. In addition, sCSHA-GFs cement was found to be more effective than MTA at prolonged incubation time in inducing the mRNA expression levels of odontoblastic differentiation markers, dentin sialophosphoprotein (DSPP) and dentin matrix protein (DMP-1), leading to increased mineralization (with calcium deposits) along with increased alkaline phosphatase (ALP) expressions, evident from Alizarin Red S and ALP staining assays. Our findings suggest that sCSHA-GFs cement may act as a suitable material in VPT for dentin-pulp regeneration.


Subject(s)
Calcium Sulfate , Dental Pulp , Humans , Calcium Sulfate/pharmacology , Dentin , Durapatite/pharmacology , Porosity , Regeneration , Vascular Endothelial Growth Factor A
9.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955623

ABSTRACT

We tested the effect of 6-(Methylsulfinyl)hexyl Isothiocyanate (6-MITC) and derivatives (I7447 and I7557) on the differentiation and maturation of human myeloid dendritic cells (DCs) in vitro, and skin transplantation in vivo. Triggering of CD14+ myeloid monocyte development toward myeloid DCs with and without 6-MITC and derivatives to examine the morphology, viability, surface marker expression, and cytokine production. Stimulatory activity on allogeneic naive T cells was measured by proliferation and interferon-γ production. The skin allograft survival area model was used to translate the 6-MITC and derivatives' antirejection effect. All of the compounds had no significant effects on DC viability and reduced the formation of dendrites at concentrations higher than 10 µM. At this concentration, 6-MITC and I7557, but not I7447, inhibited the expression of CD1a and CD83. Both 6-MITC and I7557 exhibited T-cells and interferon-γ augmentation at lower concentrations and suppression at higher concentration. The 6-MITC and I7557 prolonged skin graft survival. Both the 6-MITC and I7557 treatment resulted in the accumulation of regulatory T cells in recipient rat spleens. No toxicity was evident in 6-MITC and I7557 treatment. The 6-MITC and I7557 induced human DC differentiation toward a tolerogenic phenotype and prolonged rat skin allograft survival. These compounds may be effective as immunosuppressants against transplant rejection.


Subject(s)
Interferon-gamma , Isothiocyanates , Allografts , Animals , Dendritic Cells , Graft Survival , Humans , Isothiocyanates/pharmacology , Rats
10.
J Clin Med ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268304

ABSTRACT

BACKGROUND: Incidental radiotherapy (RT) to the adrenal gland may have systemic effects. This study aimed to investigate the effects of adrenal RT on fatigue. METHODS: BALB/c mice were surgically explored to identify the left adrenal gland and delivered intra-operative RT. The swimming endurance test was used for endurance assessment to represent fatigue. Plasma levels of stress hormones and histopathological features were examined. Three patients with inevitable RT to the adrenal gland were enrolled for the preliminary study. Serum levels of cortisol, aldosterone, and adrenocorticotropic hormone (ACTH) were measured before and after RT. Fatigue score by using the fatigue severity scale and RT dosimetric parameters were collected. RESULTS: In the experimental mouse model, adrenal RT decreased baseline cortisol from 274.6 ± 37.8 to 193.6 ± 29.4 ng/mL (p = 0.007) and swimming endurance time from 3.7 ± 0.3 to 1.7 ± 0.6 min (p = 0.02). In histopathological assessment, the irradiated adrenal glands showed RT injury features in the adrenal cortex. In the enrolled patients, baseline cortisol significantly declined after RT. There were no significant differences in the levels of morning cortisol, aldosterone, and ACTH before and after RT. CONCLUSIONS: The RT dose distributed to the adrenal gland may correlate with unwanted adverse effects, including fatigue and adrenal hormone alterations.

11.
Integr Cancer Ther ; 21: 15347354221077682, 2022.
Article in English | MEDLINE | ID: mdl-35168384

ABSTRACT

The efficacy of chemotherapeutic drugs for the treatment of brain metastasis may be compromised by the blood-brain barrier (BBB) and blood-tumor barrier (BTB). P-glycoprotein (P-gp) is a multidrug resistance protein that potentially limits the penetration of chemotherapeutics through the BBB and BTB. 5-Fluorouracil (5-FU) is widely used to treat cancer. Bioactive constituents of medicinal herbs, such as borneol and tetrandrine, potentially improve drug penetration through the BBB and BTB. We hypothesized that borneol and tetrandrine might modulate the BBB and BTB to enhance 5-FU penetration into the brain. To investigate this, in vitro and in vivo models were developed to explore the modulatory effects of borneol and tetrandrine on 5-FU penetration through the BBB and BTB. In the in vitro models, barrier integrity, cell viability, barrier penetration, P-gp activity, and NF-κB expression were assessed. In the in vivo brain metastasis models, cancer cells were injected into the internal carotid artery to evaluate tumor growth. The experimental results demonstrated that borneol and borneol + tetrandrine reduced BBB integrity. The efflux pump function of P-gp was partially inhibited by tetrandrine and borneol + tetrandrine. In the in vivo experiment, borneol + tetrandrine effectively prolonged survival without compromising body weight. In conclusion, BBB and BTB integrity was modulated by borneol and borneol + tetrandrine. The combination of borneol and tetrandrine could be used to improve the chemotherapeutic control of brain metastasis.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Benzylisoquinolines , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Camphanes , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans
12.
Chin J Integr Med ; 28(8): 725-729, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35048243

ABSTRACT

OBJECTIVE: To investigate the effect of M3P (containing Deer antler, Cordyceps sinensis, Rhodiola rosea, and Panax ginseng); an herbal remedy with the function of tonifying Kidney (Shen) and invigorating Spleen (Pi), replenishing qi and nourishing blood; on fatigue alleviation, endurance capacity and toxicity. METHODS: Swimming with weight-loading of 24 male ICR mice was used to evaluate the endurance capacity, and fatigue-related plasma biomarkers were determined. Mice were randomly assigned to control or M3P treatment groups with 6 mice for each group and were orally administered with M3P everyday for 8 weeks at doses 0, 10, 33 or 100 mg/kg. Swimming time to exhaustion was measured in a specialized water tank. Lliver and kidney functions, body weight, and hematological profile were determined to evaluate the safety and toxicity after long-term M3P administration. RESULTS: M3P supplementation 100 mg/kg significantly increased swimming endurance time up to approximate 2.4 folds of controls (P<0.05). The plasma concentrations of cortisol and hepatic glycogen content were significantly increased in mice received M3P (P<0.05, P<0.01 respectively). The lactic acid level and blood glucose were not changed after M3P treatment (P>0.05). The liver and kidney functions muscle damage biomarker creatine, body weight, and hemograms were not altered in M3P supplementation (P>0.05). CONCLUSION: M3P supplementation may improve swimming endurance accompanied by increasing hepatic glycogen content and serum cortisol level without major toxicity.


Subject(s)
Dietary Supplements , Swimming , Animals , Body Weight , Deer , Fatigue/drug therapy , Hydrocortisone , Liver Glycogen , Male , Mice , Mice, Inbred ICR , Muscle, Skeletal , Swimming/physiology
13.
Front Oncol ; 11: 729418, 2021.
Article in English | MEDLINE | ID: mdl-34513706

ABSTRACT

Esophageal cancer is a common malignancy worldwide and a leading cause of cancer-related mortality. Definitive concurrent chemoradiotherapy (CCRT) has been widely used to treat locally advanced esophageal squamous cell carcinoma (ESCC). In this study, we evaluated the predictive power of a 35-gene mutation profile and radiation parameters in patients with ESCC. Data from 44 patients with ESCC who underwent definitive CCRT were retrospectively reviewed. A 35-gene mutation profile, derived from reported ESCC-specific next-generation sequencing results, and radiation dosimetry parameters were examined using the Kaplan-Meier curve and Cox proportional hazards model. All patients were native Chinese and underwent CCRT with a median follow-up time of 22.0 months. Significant prognostic factors affecting progression-free survival in the multivariable Cox regression model were clinical nodal staging ≥2 (hazard ratio, HR: 2.52, 95% CI: 1.15-5.54, p = 0.022), ≥10% lung volume receiving ≥30 Gy (V30) (HR: 2.36, 95% CI: 1.08-5.17, p = 0.032), and mutation of fibrous sheath interacting protein 2 (FSIP2) (HR: 0.08, 95% CI: 0.01-0.58, p = 0.013). For overall survival, significant prognostic factors in the multivariable Cox regression model were lung V30 ≥10% (HR: 3.71, 95% CI: 1.48-9.35, p = 0.005) and mutation of spectrin repeat containing nuclear envelope protein 1 (SYNE1) (HR: 2.95, 95% CI: 1.25-6.97, p = 0.014). Our cohort showed higher MUC17 (79.5% vs. 5.7%), FSIP2 (18.2% vs. 6.2%), and SYNE1 (38.6% vs. 11.0%) mutation rates and lower TP53 (38.6% vs. 68.7%) mutation rates than the ESCC cohorts from The Cancer Genome Atlas. In conclusion, by using a combination of a 35-gene mutation profile and radiotherapy dosimetry, mutations in FSIP2 and SYNE1 as well as lung V30 were identified as potential predictors for developing a prediction model for clinical outcomes in patients with ESCC administered definitive CCRT.

14.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805784

ABSTRACT

Hepatocellular carcinoma (HCC) frequently shows early invasion into blood vessels as well as intrahepatic metastasis. Innovations of novel small-molecule agents to block HCC invasion and subsequent metastasis are urgently needed. Moscatilin is a bibenzyl derivative extracted from the stems of a traditional Chinese medicine, orchid Dendrobium loddigesii. Although moscatilin has been reported to suppress tumor angiogenesis and growth, the anti-metastatic property of moscatilin has not been elucidated. The present results revealed that moscatilin inhibited metastatic behavior of HCC cells without cytotoxic fashion in highly invasive human HCC cell lines. Furthermore, moscatilin significantly suppressed the activity of urokinase plasminogen activator (uPA), but not matrix metalloproteinase (MMP)-2 and MMP-9. Interestingly, moscatilin-suppressed uPA activity was through down-regulation the protein level of uPA, and did not impair the uPA receptor and uPA inhibitory molecule (PAI-1) expressions. Meanwhile, the mRNA expression of uPA was inhibited via moscatilin in a concentration-dependent manner. In addition, the expression of phosphorylated Akt, rather than ERK1/2, was inhibited by moscatilin treatment. The expression of phosphor-IκBα, and -p65, as well as κB-luciferase activity were also repressed after moscatilin treatment. Transfection of constitutively active Akt (Myr-Akt) obviously restored the moscatilin-inhibited the activation of NF-κB and uPA, and cancer invasion in HCC cells. Taken together, these results suggest that moscatilin impedes HCC invasion and uPA expression through the Akt/NF-κB signaling pathway. Moscatilin might serve as a potential anti-metastatic agent against the disease progression of human HCC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzyl Compounds/pharmacology , Cell Movement/drug effects , NF-kappa B/genetics , Proto-Oncogene Proteins c-akt/genetics , Urokinase-Type Plasminogen Activator/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation, Neoplastic , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/prevention & control , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/metabolism
15.
Oral Dis ; 27(7): 1766-1774, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33191606

ABSTRACT

OBJECTIVES: We investigated the relation between expression of sirtuin 5 (SIRT5) in osteoblastic cells and progression of apical periodontitis. The role of SIRT5 in hypoxia-induced reactive oxygen species (ROS) formation and osteoblast apoptosis was also examined. MATERIALS AND METHODS: Progression of rat apical periodontitis was monitored by conventional radiography and microcomputed tomography. SIRT5 and oxidative stress biomarker 8-OHdG in bone-lining cells were assessed by immunohistochemistry. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was used to demonstrate apoptosis. In primary human osteoblasts cultured under hypoxia, Western blot was used to analyze SIRT5 expression and cleavage of pro-caspase 3 and poly(ADP-ribose) polymerase (PARP). SIRT5 was overexpressed through lentiviral technique. ROS formation and mitochondrial membrane potential changes were assessed by MitoSOX-Red and JC-1 fluorescence, respectively. Immunofluorescence microscope was used to evaluate mitochondrial release of cytochrome c. RESULTS: In rat apical periodontitis, disease progression was accompanied by decreased expression of SIRT5, increased oxidative stress, and enhanced apoptosis in bone-lining cells. SIRT5 was suppressed in cultured osteoblasts under hypoxia. SIRT5 overexpression ameliorated hypoxia-enhanced ROS formation, mitochondrial depolarization, cytochrome c leakage, activation of caspase-3, and PARP fragmentation. CONCLUSIONS: SIRT5 is able to alleviate hypoxia-enhanced osteoblast apoptosis. SIRT5 augmentation may have therapeutic potential for apical periodontitis.


Subject(s)
Periapical Periodontitis , Sirtuins , Animals , Apoptosis , Rats , Reactive Oxygen Species , X-Ray Microtomography
16.
Cancer Control ; 27(1): 1073274819897975, 2020.
Article in English | MEDLINE | ID: mdl-32281394

ABSTRACT

TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 µM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase-related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Damage/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Lung Neoplasms/drug therapy , Camptothecin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Checkpoint Kinase 1/antagonists & inhibitors , Dose-Response Relationship, Drug , Histones/drug effects , Humans
17.
Int J Mol Sci ; 21(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111101

ABSTRACT

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, food additives, pigments, rubber manufacture, and electronic materials. Several studies have shown that ZnO-NPs inhibit cell growth and induce apoptosis by the production of oxidative stress in a variety of human cancer cells. However, the anti-cancer property and molecular mechanism of ZnO-NPs in human gingival squamous cell carcinoma (GSCC) are not fully understood. In this study, we found that ZnO-NPs induced growth inhibition of GSCC (Ca9-22 and OECM-1 cells), but no damage in human normal keratinocytes (HaCaT cells) and gingival fibroblasts (HGF-1 cells). ZnO-NPs caused apoptotic cell death of GSCC in a concentration-dependent manner by the quantitative assessment of oligonucleosomal DNA fragmentation. Flow cytometric analysis of cell cycle progression revealed that sub-G1 phase accumulation was dramatically induced by ZnO-NPs. In addition, ZnO-NPs increased the intracellular reactive oxygen species and specifically superoxide levels, and also decreased the mitochondrial membrane potential. ZnO-NPs further activated apoptotic cell death via the caspase cascades. Importantly, anti-oxidant and caspase inhibitor clearly prevented ZnO-NP-induced cell death, indicating the fact that superoxide-induced mitochondrial dysfunction is associated with the ZnO-NP-mediated caspase-dependent apoptosis in human GSCC. Moreover, ZnO-NPs significantly inhibited the phosphorylation of ribosomal protein S6 kinase (p70S6K kinase). In a corollary in vivo study, our results demonstrated that ZnO-NPs possessed an anti-cancer effect in a zebrafish xenograft model. Collectively, these results suggest that ZnO-NPs induce apoptosis through the mitochondrial oxidative damage and p70S6K signaling pathway in human GSCC. The present study may provide an experimental basis for ZnO-NPs to be considered as a promising novel anti­tumor agent for the treatment of gingival cancer.


Subject(s)
Apoptosis/drug effects , Carcinoma, Squamous Cell/metabolism , Gingival Neoplasms/metabolism , Mitochondria/metabolism , Nanoparticles/chemistry , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Zinc Oxide/pharmacology , Caspases/metabolism , Cell Death/drug effects , Gingiva , Humans , Keratinocytes/metabolism , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Phosphorylation , Reactive Oxygen Species/metabolism
18.
J Clin Med ; 9(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024132

ABSTRACT

Neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery is widely used for treating locally advanced esophageal cancer in the thorax. This study evaluated the feasibility of neoadjuvant CCRT as a larynx preservation strategy for treating cervical esophageal squamous cell carcinoma (SCC) by a multidisciplinary team. Fifteen patients with cervical esophageal SCC who received neoadjuvant CCRT and radical surgery at our institution were reviewed. All patients received CCRT using the intensity-modulated radiation therapy with 48 Gy to gross tumor and 43.2 Gy to regional lymphatic basin in 24 fractions. Side effects, clinical tumor responses, pathological responses, and surgical margin status were analyzed. Pathological T down-staging was noted in seven patients (46.7%); pathological complete response was achieved in three patients (20%). Fourteen patients (93.3%) had larynx preservation; eight patients (53.3%) achieved negative surgical margins. The 2-year overall survival, local relapse-free survival, and regional relapse-free survival were 50.6%, 62.2%, and 47.5%, respectively. Neoadjuvant CCRT and larynx-sparing surgery are feasible and tolerable in patients with cervical esophageal SCC. Prospectively designed studies for large patient groups and long-term follow-up results are needed for validating this multimodality therapy.

19.
Biomolecules ; 9(12)2019 11 23.
Article in English | MEDLINE | ID: mdl-31771225

ABSTRACT

A natural compound from Wasabia japonica, 6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) was investigated for its anti-leukemia activity and mechanism of action. It was found that 6-MITC inhibited the viability of human chronic myelogenous leukemia K562 cells along with extensive mitotic arrest, spindle multipolarity, and cytoplasmic vacuole accumulation. The evidence of autophagy included the validation of autophagosomes with double-layered membranes under transmission electron microscopy, LC3I/II conversion, and the induction of G2/M phase arrest observed with acridine orange staining of treated cells, as well as the elevation of phosphorylated-histone H3 expression at the M phase. With regard to the expression of proteins related to mitosis, the downregulation of p-CHK1, p-CHK2, p-cdc25c, and p-cdc2, as well as the upregulation of cyclin B1, p-cdc20, cdc23, BubR1, Mad2, and p-plk-1 was observed. The knockdown of cdc20 was unable to block the effect of 6-MITC. The differentiation of k562 cells into monocytes, granulocytes, and megakaryocytes was not affected by 6-MITC. The 6-MITC-induced unique mode of cell death through the concurrent induction of mitosis and autophagy may have therapeutic potential. Further studies are required to elucidate the pathways associated with the counteracting occurrence of mitosis and autophagy.


Subject(s)
Isothiocyanates/pharmacology , Leukemia/physiopathology , Mitosis/drug effects , Plant Extracts/pharmacology , Wasabia/chemistry , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Histones/metabolism , Humans , K562 Cells , Leukemia/drug therapy , Leukemia/metabolism
20.
Phytomedicine ; 64: 152911, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31454653

ABSTRACT

Background Garcimultiflorone K is a novel polyprenylated polycyclic acylphloroglucinol isolated from the stems of Garcinia multiflora that exhibits promising anti-angiogenic activity in human endothelial progenitor cells (EPCs). Purpose This study sought to determine the underlying anti-angiogenic mechanisms and pharmacological properties of garcimultiflorone K. Methods We examined the anti-angiogenic effects of garcimultiflorone K and its mechanisms of action using in vitro EPC models and in vivo zebrafish embryos. Results EPCs proliferation, migration, differentiation and capillary-like tube formation were effectively and concentration-dependently inhibited by garcimultiflorone K without any signs of cytotoxicity. Our investigations revealed that garcimultiflorone K suppressed EPCs angiogenesis through Akt, mTOR, p70S6K, and eNOS signaling cascades. Notably, garcimultiflorone K dose-dependently impeded angiogenesis in zebrafish embryos. Conclusion Our data demonstrate the anti-angiogneic effects of garcimultiflorone K in both in vitro and in vivo models. Garcimultiflorone K appears to have potential in the treatment of angiogenesis-related diseases.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Garcinia/chemistry , Neovascularization, Pathologic/drug therapy , Phloroglucinol/pharmacology , Signal Transduction/drug effects , Angiogenesis Inhibitors/chemistry , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Endothelial Progenitor Cells/drug effects , Humans , Nitric Oxide Synthase Type III/metabolism , Phloroglucinol/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...