Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 11(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36294525

ABSTRACT

To investigate the effect of caspase-1 inhibition on PANoptosis in macrophages infected with Enterococcus faecalis OG1RF. RAW264.7 cells with and without pretreatment by caspase-1 inhibitor were infected with E. faecalis OG1RF at multiplicities of infection (MOIs). A live cell imaging analysis system and Western blot were applied to evaluate the dynamic curve of cell death and the expression of executor proteins of PANoptosis. The mRNA expression of IL-1ß and IL-18 was quantified by RT-qPCR. Morphological changes were observed under scanning electron microscopy. We found that PI-positive cells emerged earlier and peaked at a faster rate in E. faecalis-infected macrophages (Ef-MPs) at higher MOIs. The expression of the N-terminal domain of the effector protein gasdermin D (GSDMD-N), cleaved caspase-3 and pMLKL were significantly upregulated at MOIs of 10:1 at 6 h and at MOI of 1:1 at 12 h postinfection. In Ef-MPs pretreated with caspase-1 inhibitor, the number of PI-positive cells was significantly reduced, and the expression of IL-1ß and IL-18 genes and cleaved caspase-1/-3 and GSDMD-N proteins was significantly downregulated (p < 0.05), while pMLKL was still markedly increased (p < 0.05). Ef-MPs remained relatively intact with caspase-1 inhibitor. In conclusion, E. faecalis induced cell death in macrophages in an MOI-dependent manner. Caspase-1 inhibitor simultaneously inhibited pyroptosis and apoptosis in Ef-MPs, but necroptosis still occurred.

2.
BMC Oral Health ; 21(1): 622, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876112

ABSTRACT

BACKGROUND: The extrusion of overfilled materials that extend beyond the apical foramina into the periradicular tissue may serve as a reservoir for bacterial adhesion and further affect recovery from periapical diseases. The aim of this study was to evaluate the effects of serum proteins on Enterococcus faecalis adhesion and survival on the surface of a calcium hydroxide-based root canal sealer (Apexit Plus), an epoxy resin sealer (AH-Plus) and a bioceramic sealer (iRoot SP). METHODS: Apexit Plus, AH-Plus and iRoot SP were evenly coated on gutta-percha, using gutta-percha alone as the control. After root canal sealer setting, the number of E. faecalis adhering to the root canal sealers and gutta-percha was counted in fetal bovine serum (FBS) or tryptic soy broth supplemented with 1% glucose (TSBG) by viable cell plate counts. The morphology of 7-day-old E. faecalis biofilms in FSB and TSBG was observed by scanning electron microscopy (SEM). Furthermore, E. faecalis biofilms on the three root canal sealers were labeled with a LIVE/DEAD BacLight™ Bacterial Viability Kit, and the ratios of viable to dead cells were analyzed using laser scanning microscopy operative software (Zen software). RESULTS: In the assays, after 1 and 7 days, the number of E. faecalis adhering to the root canal sealers or gutta-percha in FBS were significantly lower than those in TSBG (P < 0.05). In FBS, E. faecalis adhesion to iRoot SP and gutta-percha was reduced to a greater extent than that adhered to Apexit Plus and AH-Plus. Few E. faecalis accumulated on iRoot SP in FBS, whereas many bacteria assembled on iRoot SP and formed biofilms in TSBG. The ratio of viable cells in the E. faecalis biofilm on iRoot SP was the lowest. CONCLUSIONS: Calcium hydroxide-based root canal sealers, epoxy resin sealers and bioceramic sealers may provide a substrate for E. faecalis adhesion, and the bioceramic sealer in this study showed the least E. faecalis adhesion in the presence of serum proteins compared to the other two sealers.


Subject(s)
Gutta-Percha , Root Canal Filling Materials , Biofilms , Blood Proteins , Enterococcus faecalis , Epoxy Resins , Materials Testing , Root Canal Filling Materials/pharmacology , Root Canal Obturation
3.
J Mater Sci Mater Med ; 32(11): 137, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34716807

ABSTRACT

A thin endocrown restoration was often applied in endodontically treated teeth with vertical bite height loss or inadequate clinical crown length. A model of mandibular molars made by endocrown restoration with 1 mm thickness and 2 mm depth of pulp chamber was constructed and imported into FEA ANSYS v18.0 software. The three CAD/CAM materials, feldspathic (Mark2), lithium disilicate (EMAX), and lava ultimate (LU), were assigned, and the five load indenters were loaded on the full occlusal (FO), occlusal center (OC), central fossa (CF), buccal groove (BG), and mesiobuccal cusp (MC) of restoration in the model. The MinPS and MaxPS of the thin endocrown were significantly higher than those of tooth tissue in five types of loads except for the LU endocrown loaded in the FO group. The smaller the contact surface of the load was, the higher MaxPS and MinPS were. MaxPS and MinPS of the MC were the highest, followed by the BG and CF in the restoration. In the stress distribution of tooth tissue, MaxPS in the LU endocrown accumulated at the external edge of enamel and was significantly higher than MaxPS in Mark2 and EMAX endocrown concentrated on the chamber wall of dentin under OC, CF and BG loads. Within the limitations of this FEA study, the LU endocrown transferred more stress to tooth tissue than Mark2 and EMAX, and the maximum principal stress on endocrown restoration and tooth tissue at the mesiobuccal cusp load was higher than that at the central fossa and buccal groove load.


Subject(s)
Biocompatible Materials , Dental Materials , Materials Testing , Dental Restoration, Permanent/instrumentation , Dental Restoration, Permanent/methods , Finite Element Analysis , Humans , Stress, Mechanical
4.
Front Cell Infect Microbiol ; 11: 720147, 2021.
Article in English | MEDLINE | ID: mdl-34513732

ABSTRACT

To investigate the effects of two Enterococcus faecalis root canal isolated strains (CA1 and CA2) and of the OG1RF strain on apoptosis, pyroptosis, and necroptosis in macrophages. The virulence factors of E. faecalis CA1 and CA2 pathogenic strains were annotated in the Virulence Factors Database (VFDB). E. faecalis CA1, CA2, and OG1RF strains were used to infect RAW264.7 macrophages (MOI, 100:1). We assessed the viability of intracellular and extracellular bacteria and of macrophages at 2, 6, and 12 h post-infection. We used a live cell imaging analysis system to obtain a dynamic curve of cell death after infection by each of the three E. faecalis strains. At 6 and 12 h post-infection, we quantified the mRNA expression levels of PANoptosis-related genes and proteins by RT-qPCR and western blot, respectively. We identified ultrastructural changes in RAW264.7 cells infected with E. faecalis OG1RF using transmission electron microscopy. We found 145 and 160 virulence factors in the CA1 and CA2 strains, respectively. The extracellular CA1 strains grew faster than the CA2 and OG1RF strains, and the amount of intracellular viable bacteria in the OG1RF group was highest at 6 and 12 h post-infection. The macrophages in the CA1 infection group were the first to reach the maximum PI-positivity in the cell death time point curve. We found the expressions of mRNA expression of caspase-1, GSDMD, caspase-3, MLKL, RIPK3, NLRP3, IL-1ß and IL-18 and of proteins cleaved caspase-1, GSDMD, cleaved caspase-3 and pMIKL in the macrophages of the three infection groups to be upregulated (P<0.05). We detected ultrastructural changes of apoptosis, pyroptosis, and necroptosis in macrophages infected with E. faecalis. The three E. faecalis strains induced varying degrees of apoptosis, pyroptosis, and necroptosis that were probably associated with PANoptosis in macrophages. The E. faecalis CA1 strain exhibited faster growth and a higher real-time MOI, and it induced higher expression levels of some PANoptosis-related genes and proteins in the infected macrophages than the other strains tested.


Subject(s)
Necroptosis , Pyroptosis , Apoptosis , Dental Pulp Cavity , Enterococcus faecalis , Macrophages
5.
Dent Mater J ; 40(5): 1129-1135, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34121024

ABSTRACT

This study evaluated the cyclic fatigue resistance for six types of 25# NiTi instruments. A traditional manufacturing instrument, an M wire instrument, a gold treatment instrument, a controlled memory (CM) wire instrument, a CM wire instrument with electrical discharge machining (EDM), and an R-phase heat treatment instrument, were operated in the different curved artificial canals. The fracture time (FT) and number of cycles to fracture (NCF) of the NiTi instruments were higher at 45° angles and double-curvature canals than at 60° angles. Except for the instruments with gold technology and EDM technology, others showed the longest FT and the highest NCF at an 8 mm radius of curvature. Morphological characteristics of cyclic fatigue were exhibited on the cross-section and lateral view of fracture fragments. The use of M-wire, R-phase wire, CM-wire, gold technology, EDM technology, and reciprocating movement were beneficial to enhance the cyclic fatigue resistance of NiTi files.


Subject(s)
Radius , Root Canal Preparation , Alloys , Dental Alloys , Dental Instruments , Equipment Design , Equipment Failure , Materials Testing , Titanium
6.
Front Cell Dev Biol ; 9: 820274, 2021.
Article in English | MEDLINE | ID: mdl-35237614

ABSTRACT

Chronic apical periodontitis (CAP) is a unique dynamic interaction between microbial invasions and host defense mechanisms, resulting in infiltration of immune cells, bone absorption, and periapical granuloma formation. To help to understand periapical tissue pathophysiology, we constituted a single-cell atlas for 26,737 high-quality cells from inflammatory periapical tissue and uncovered the complex cellular landscape. The eight types of cells, including nonimmune cells and immune cells, were identified in the periapical tissue of CAP. Considering the key roles of nonimmune cells in CAP, we emphasized osteo-like cells, basal/stromal cells, endothelial cells, and epithelial cells, and discovered their diversity and heterogeneity. The temporal profiling of genomic alterations from common CAP to typical periapical granuloma provided predictions for transcription factors and biological processes. Our study presented potential clues that the shift of inflammatory cytokines, chemokines, proteases, and growth factors initiated polymorphic cell differentiation, lymphangiogenesis, and angiogenesis during CAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...