Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Plant Physiol Biochem ; 210: 108611, 2024 May.
Article in English | MEDLINE | ID: mdl-38615439

ABSTRACT

A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.


Subject(s)
Abscisic Acid , Anthocyanins , Blueberry Plants , Gene Expression Regulation, Plant , Plant Proteins , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Abscisic Acid/metabolism , Blueberry Plants/genetics , Blueberry Plants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Plants, Genetically Modified/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Fruit/metabolism , Fruit/genetics
2.
Front Plant Sci ; 14: 1018874, 2023.
Article in English | MEDLINE | ID: mdl-36909449

ABSTRACT

Sucrose non-fermenting1-related protein kinase-2 (SnRK2) is a plant-specific protein kinase family and an important component of the abscisic acid (ABA) signaling pathway. However, there is a lack of relevant studies in blueberry (Vaccinium corymbosum). In this study, we identified six SnRK2 family members (from VcSnRK2.1 to VcSnRK2.6) in blueberries for the first time. In addition, we found that VcSnRK2.3 expression was not only positively correlated with fruit ripening but was also induced by ABA signaling. Transient expression in blueberry fruits also proved that VcSnRK2.3 promoted anthocyanin accumulation and the expression of anthocyanin synthesis-related genes such as VcF3H, VcDFR, VcANS, and VcUFGT. Transgenic Arabidopsis thaliana seeds and seedlings overexpressing VcSnRK2.3 showed anthocyanin pigmentation. Yeast two-hybrid assays (Y2H) and Bimolecular fluorescence complementation assays (BiFC) demonstrated that VcSnRK2.3 could interact with the anthocyanin positive regulator VcMYB1. Finally, VcSnRK2.3 was able to enhance the binding of VcMYB1 to the VcDFR promoter. Via regulation transcription of anthocyanin biosynthesis genes, VcSnRK2.3 promoted anthocyanin accumulation in blueberry. The above results suggest that VcSnRK2.3 plays an important role in blueberry anthocyanin synthesis, is induced by ABA, and can interact with VcMYB1 to promote anthocyanin biosynthesis in blueberry.

3.
Front Plant Sci ; 12: 754325, 2021.
Article in English | MEDLINE | ID: mdl-34659323

ABSTRACT

Blueberries (Vaccinium corymbosum) contain large amounts of flavonoids, which play important roles in the plant's ability to resist stress and can also have beneficial effects on human health when the fruits are eaten. However, the molecular mechanisms that regulate flavonoid synthesis in blueberries are still unclear. In this study, we combined two different transcriptome sequencing platforms, single-molecule real-time (SMRT) and Illumina sequencing, to elucidate the flavonoid synthetic pathways in blueberries. We analyzed transcript quantity, length, and the number of annotated genes. We mined genes associated with flavonoid synthesis (such as anthocyanins, flavonols, and proanthocyanidins) and employed fluorescence quantitative PCR to analyze the expression of these genes and their correlation with flavonoid synthesis. We discovered one R2R3 MYB transcription factor from the sequencing library, VcMYB1, that can positively regulate anthocyanin synthesis in blueberries. VcMYB1 is mainly expressed in colored (mature) fruits. Experiments showed that overexpression and transient expression of VcMYB1 promoted anthocyanin synthesis in Arabidopsis, tobacco (Nicotiana benthamiana) plants and green blueberry fruits. Yeast one-hybrid (Y1H) assay, electrophoretic mobility shift assay, and transient expression experiments showed that VcMYB1 binds to the MYB binding site on the promoter of the structural gene for anthocyanin synthesis, VcMYB1 to positively regulate the transcription of VcDFR, thereby promoting anthocyanin synthesis. We also performed an in-depth investigation of transcriptional regulation of anthocyanin synthesis. This study provides background information and data for studying the synthetic pathways of flavonoids and other secondary metabolites in blueberries.

4.
Plant Dis ; 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34156268

ABSTRACT

Passion fruit (Passiflora edulis) is widely cultivated in tropic and subtropic regions. Because of its unique and intense flavour and high acidity, passion fruit juice concentrate is used in making delectable sauces, desserts, candy, ice cream, sherbet, or blending with other fruit juices. Anthracnose of passion fruit is favored by frequent rainfall and average temperatures above 27°C. In August 2018, anthracnose on passion fruit was observed in commercial plantings in Lincang, Yunnan, China (23.88 N, 100.08 E). Symptoms included lesions of oval to irregular shapes with brown to dark brown borders. Infection covered most of the fruit surface with pink-to-dark sporulation as reported by Tarnowski and Ploetz (2010). A conidial mass from an individual sorus observed on an infected fruit was isolated and cultured on potato dextrose agar (PDA) supplemented with 50 µg ml-1 of streptomycin. From a single microscopic field, two monospore isolates were dissected using a sterile needle, subcultured, and referred to as BXG-1 and BXG-2. Morphological characters including conidia colour, size, and shape were similar between the two isolates. Conidia were aseptate and cylindrical with apex and rounded base. Conidial length ranged from 12.3 to 16.1 µm (avg. 13.5) and width ranged from 5.5 to 6.2 µm (avg. 5.7). Morphologic data were consistent with Colletotrichum constrictum (Damm et al., 2012). To further confirm the fungal species, the ribosomal internal transcribed spacer (ITS), partial sequences of actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ß-tubulin 2 (TUB2) were amplified and sequenced. Primers and PCR amplification were described by Damm et al. (2012). The sequences were compared to type sequences in GenBank. The results showed the ITS (GenBank accession MW828148 and MW828149), ACT (MW855882 and MW855883), CHS-1 (MW855884 and MW855885), GAPDH (MW855886 and MW855887), and TUB2 (MW855888 and MW855889) sequences of the isolates BXG-1 and BXG-2 were 98% identical with sequence data from strain CBS:128504 of C. constrictum. A maximum likelihood tree was constructed using MEGA-X version 10.1.6 (Kumar et al., 2018) based on a combined dataset of the ITS, ACT, CHS-1, GAPDH, and TUB2 sequences of BXG-1 and BXG-2, and those of 18 Colletotrichum spp. previously deposited in GenBank (Damm et al., 2012). The phylogenetic analysis showed that BXG-1 and BXG-2 belong to the C. constrictum clade. Based on morphology and DNA sequencing, BXG-1 and BXG-2 were identified as C. constrictum. To verify pathogenicity, passion fruit were sprayed with a suspension of 1 × 105 conidia ml-1. Control fruit were sprayed with sterilized water. After inoculation, fruit were incubated in an Artificial Climate Box at 27°C and 80% RH. Necrotic symptoms appeared 8 days after inoculation and were similar to those observed on fruit form the field. The pathogen was reisolated from lesions thus fulfilling Koch's postulates. C. constrictum has been reported to cause anthracnose of citrus from Australia (Wang et al., 2021) and mango from Italy (Ismail et al., 2015). To our knowledge, this is the first report of C. constrictum causing anthracnose on passion fruit worldwide, and these data will provide useful information for developing effective control strategies.

5.
Curr Microbiol ; 73(6): 802-810, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27582094

ABSTRACT

The Colletotrichum gloeosporioides is one of the most significant pathogens leading to huge economic losses. To infect plants and cause disease dissemination, the fungus elaborates to produce asexual spores called conidia, which are long-lived and highly resistant to environmental stresses. Here, we report a large-scale, systematic genome-wide screening of conidiogenesis-associated genes via conidiation assays, and high-efficiency TAIL-PCRs. Of 10,210 independent transformants tested, 59 mutants exhibited significant variation in conidial production. The T-DNA right flanking sequences of 11 conidiation-related transformants were further identified, and the obtained sequences were aligned to the genome sequence to uncover the novel loci of sporogenesis. When considering together, this study provided a large number of conidial production-variation mutants and the conidiation-related genes, which will be a valuable resource for characterizing the molecular mechanisms of conidial formation in the fungus.


Subject(s)
Agrobacterium tumefaciens/genetics , Colletotrichum/genetics , Fungal Proteins/genetics , Genetic Vectors/genetics , Spores, Fungal/genetics , Transformation, Genetic , Agrobacterium tumefaciens/physiology , Colletotrichum/growth & development , Colletotrichum/metabolism , Fungal Proteins/metabolism , Genetic Vectors/physiology , Mutagenesis, Insertional , Plant Diseases/microbiology , Spores, Fungal/growth & development , Spores, Fungal/metabolism
6.
Yi Chuan ; 38(3): 254-70, 2016 03.
Article in Chinese | MEDLINE | ID: mdl-27001479

ABSTRACT

The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.


Subject(s)
Genome, Plant , Multigene Family , Plant Proteins/genetics , Prunus persica/genetics , Transcription Factors/genetics , Amino Acid Motifs , Amino Acid Sequence , Evolution, Molecular , Gene Expression Regulation, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/chemistry , Plants/classification , Plants/genetics , Protein Structure, Tertiary , Prunus persica/chemistry , Prunus persica/classification , Prunus persica/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism
7.
Gene ; 555(2): 277-90, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25447908

ABSTRACT

The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mß, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , MADS Domain Proteins/genetics , Malus/genetics , Multigene Family , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis/genetics , Chromosomes/ultrastructure , Exons , Flowers/genetics , Gene Expression Profiling , Introns , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...