Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
1.
Article in English | MEDLINE | ID: mdl-38980948

ABSTRACT

Fine tuning of the metal site coordination environment of a single-atom catalyst (SAC) to boost its catalytic activity for oxygen reduction reaction (ORR) is of significance but challenging. Herein, we report a new SAC bearing Fe-N3C-N sites with asymmetric in-plane coordinated Fe-N3C and axial coordinated N atom for ORR, which was obtained by pyrolysis of an iron isoporphyrin on polyvinylimidazole (PVI) coated carbon black. The C@PVI-(NCTPP)Fe-800 catalyst exhibited significantly improved ORR activity (E1/2 = 0.89 V vs RHE) than the counterpart SAC with Fe-N4-N sites in 0.1 M KOH. Significantly, the Zn-air batteries equipped with the C@PVI-(NCTPP)Fe-800 catalyst demonstrated an open-circuit voltage (OCV) of 1.45 V and a peak power density (Pmax) of 130 mW/cm2, outperforming the commercial Pt/C catalyst (OCV = 1.42 V; Pmax = 119 mW/cm2). The density functional theory (DFT) calculations revealed that the d-band center of the asymmetric Fe-N3C-N structure shifted upward, which enhances its electron-donating ability, favors O2 adsorption, and supports O-O bond activation, thus leading to significantly promoted catalytic activity. This research presents an intriguing strategy for the designing of the active site architecture in metal SACs with a structure-function controlled approach, significantly enhancing their catalytic efficiency for the ORR and offering promising prospects in energy-conversion technologies.

2.
Dalton Trans ; 53(27): 11464-11469, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38910547

ABSTRACT

Bioinspired by the active sites of multicopper oxidases (MCOs), bi/multinuclear copper complexes have attracted great attention in promoting catalytic activity for the oxygen reduction reaction (ORR). Herein, we report the preparation of a Cu-N-C electrocatalyst Cu-BPOZ@CNB-400 for efficient ORR, which was obtained by low temperature pyrolysis of a dinuclear 2,5-bis(2-pyridyl)-1,3,4-oxadiazole (BPOZ) copper complex loaded on a N-doped carbon support at 400 °C. Cu-BPOZ@CNB-400 exhibited a half-wave potential (E1/2) of 0.86 V vs. RHE for the ORR in 0.1 M KOH solution, which was significantly higher than that of the Cu-BPOZ@CNB-800 (E1/2 = 0.83 V) catalyst treated under high temperature (at 800 °C) and the control catalyst Cu-Phen@CNB-400 (E1/2 = 0.82 V) derived from low-temperature-treatment (at 400 °C) of a mononuclear phenanthroline-coordinated-Cu complex loaded on a N-doped carbon support. When Cu-BPOZ@CNB-400 was applied as the cathode catalyst in zinc-air batteries a maximum power density (Pmax) of 127 mW cm-2 could be achieved, demonstrating comparable catalyst performance to the commercial 20 wt% Pt/C (Pmax = 122 mW cm-2) and the control Cu-Phen@CNB-400 catalyst (Pmax = 105 mW cm-2) under similar experimental conditions. Low-temperature pyrolysis of dinuclear copper complexes on a carbon support improved the charge transfer efficiency, inhibited metal aggregation, and could produce highly dispersed Cu-N-C catalysts with dinuclear copper sites for promoting the 4e--reduction selectivity of the ORR. It thus provides a cost-effective approach for the controllable fabrication of efficient ORR catalysts to be applied for energy conversion devices.

3.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932407

ABSTRACT

There is a knowledge gap concerning the proper timing for COVID-19 vaccination in cancer patients undergoing chemotherapy. We aimed to evaluate the suitability of the guidelines that recommend waiting at least three months after undergoing chemotherapy before receiving a COVID-19 vaccine. This retrospective cohort study used aggregated data from the TriNetX US Collaboratory network. Participants were grouped into two groups based on the interval between chemotherapy and vaccination. The primary outcome assessed was infection risks, including COVID-19; skin, intra-abdominal, and urinary tract infections; pneumonia; and sepsis. Secondary measures included healthcare utilization and all causes of mortality. Kaplan-Meier analysis and the Cox proportional hazard model were used to calculate the cumulative incidence and hazard ratio (HR) and 95% confidence intervals for the outcomes. The proportional hazard assumption was tested with the generalized Schoenfeld approach. Four subgroup analyses (cancer type, vaccine brand, sex, age) were conducted. Sensitivity analyses were performed to account for competing risks and explore three distinct time intervals. Patients receiving a vaccine within three months after chemotherapy had a higher risk of COVID-19 infection (HR: 1.428, 95% CI: 1.035-1.970), urinary tract infection (HR: 1.477, 95% CI: 1.083-2.014), and sepsis (HR: 1.854, 95% CI: 1.091-3.152) compared to those who adhered to the recommendations. Hospital inpatient service utilization risk was also significantly elevated for the within three months group (HR: 1.692, 95% CI: 1.354-2.115). Adhering to a three-month post-chemotherapy waiting period reduces infection and healthcare utilization risks for cancer patients receiving a COVID-19 vaccine.

4.
Angew Chem Int Ed Engl ; : e202407702, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38751355

ABSTRACT

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

6.
Drug Test Anal ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653500

ABSTRACT

To prevent athletes from unintentional doping, the anti-doping authorities in Taiwan have launched several sports-prohibited substances inquiry services since 2008. This study aimed to enhance the prevention of sports-prohibited substance misuse by analyzing data collected from major nationwide service systems, enabling the identification of trends in athletes' exposure to drugs and prohibited substances. The study collected over 30,000 data points from three major national anti-doping inquiry systems, spanning from 2008 to 2022. The information of the users consulted products, prohibited substances, and sports disciplines in the data were calculated and categorized. The usage of inquiry systems has shown an increasing trend from 2008 to 2022. Athletes comprised the majority of users (> 40%), significantly outnumbering other user groups (all below 20%). Among the inquiries, Western medicine accounted for the highest percentage (up to 79.6%), and it also contained the majority of the prohibited substances. Interestingly, traditional Chinese medicines had a higher chance (35.9%) of containing prohibited substances, as indicated by the mobile application. The prohibited substances mainly belonged to class S6 stimulants and S9 glucocorticoids. Among the daily medicinal products and nutritional supplements encountered by sports personnel, approximately 30% of them were found to contain prohibited substances. Future educational efforts should focus on raising awareness about traditional Chinese medicines and drugs for the common cold, ADHD, and pain relief, as well as their regulation, to prevent the misuse of prohibited substances.

8.
Brain Behav Immun Health ; 37: 100754, 2024 May.
Article in English | MEDLINE | ID: mdl-38511149

ABSTRACT

Inflammatory responses to acute stimuli are proposed to regulate sleep, but the relationship between chronic inflammation and habitual sleep duration is elusive. Here, we study this relation using genetically predicted level of chronic inflammation, indexed by CRP and IL6 signaling, and self-reported sleep duration. By Mendelian randomization analysis, we show that elevated CRP level within <10 mg/L has a homeostatic effect that facilitates maintaining 7-8 h sleep duration per day - making short-sleepers sleep longer (p = 2.42 × 10-2) and long-sleepers sleep shorter (1.87 × 10-7); but it is not associated with the overall sleep duration (p = 0.17). This homeostatic effect replicated in an independent CRP dataset. We observed causal effects of the soluble interleukin 6 receptor and gp130 on overall sleep duration (p = 1.62 × 10-8, p = 2.61 × 10-58, respectively), but these effects disappeared when CRP effects were accounted for in the model. Using polygenic score analysis, we found that the homeostatic effect of CRP on sleep duration stems primarily from the genetic variants within the CRP gene region: when genetic variants outside of this region were used to predict CRP levels, the opposite direction of effect was observed. In conclusion, we show that elevated CRP level may causally facilitate maintaining an optimal sleep duration that is beneficial to health, thus updating our current knowledge of immune regulation on sleep.

9.
NPJ Sci Food ; 8(1): 19, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555403

ABSTRACT

SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.

10.
Environ Sci Pollut Res Int ; 31(18): 26916-26927, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456980

ABSTRACT

Catalytic wet peroxide oxidation (CWPO) has become an important deep oxidation technology for organics removal in wastewater treatments. Supported Cu-based catalysts belong to an important type of CWPO catalyst. In this paper, two Cu catalysts, namely, Cu/Al2O3-air and Cu/Al2O3-H2 were prepared and evaluated through catalytic degradation of phenol. It was found that Cu/Al2O3-H2 had an excellent catalytic performance (TOC removal rate reaching 96%) and less metal dissolution than the Cu/Al2O3-air case. Moreover, when the organic removal rate was promoted at a higher temperature, the metal dissolution amounts was decreased. Combined with hydroxyl radical quenching experiments, a catalytic oxidation mechanism was proposed to explain the above-mentioned interesting behaviors of the Cu/Al2O3-H2 catalyst for CWPO. The catalytic test results as well as the proposed mechanism can provide better guide for design and synthesis of good CWPO catalysts.


Subject(s)
Copper , Oxidation-Reduction , Peroxides , Phenol , Catalysis , Copper/chemistry , Peroxides/chemistry , Phenol/chemistry , Aluminum Oxide/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods
11.
Diagnostics (Basel) ; 14(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38396490

ABSTRACT

Long-term Glucocorticoid (GC) use results in compromised bone strength and fractures, and several treatment recommendations have been developed to prevent fractures, but none have been validated in a real-world setting. This study aims to create a treatment decision tool and compares this tool to the treatment suggestions from the American College of Rheumatology (ACR), International Osteoporosis Foundation and European Calcified Tissue Society (IOF-ECTS), and GC-adjusted Fracture Risk Assessment Tool (GC-FRAX), above the intervention threshold. We utilized registry data gathered at Chang Gung Memorial Hospital at Kaohsiung, Taiwan, between September 2014 and April 2021. This research is a single-center, observational, and case-controlled study. We recruited participants using prednisone for at least 2.5 mg/day or the equivalent dose for over 3 months, excluding those younger than 40, those with malignancies, or those currently undergoing anti-osteoporosis therapy. The primary endpoint was new fragility fractures within 3 years, including morphometric vertebral fractures detected at baseline and with a follow-up thoracic-lumbar spine X-ray. Participants were randomly allocated into derivation and validation sets. We developed the Steroid-Associated Fracture Evaluation (SAFE) tool in the derivation cohort by assessing the weights of exploratory variables via logistic regression. Prediction performance was compared in the validation set by the receiver operating characteristic (ROC) curve, the area under the curve (AUC), and sensitivity and specificity. A total of 424 treatment-naïve subjects were enrolled, and 83 (19.6%) experienced new fractures within 3 years. The final formula of the SAFE tool includes osteoporosis (1 point), an accumulated GC dose ≥ 750 mg within 6 months (or equivalent prednisolone of ≥4.5 mg/day for 6 months) (1 point), a BMI ≥ 23.5 (1 point), previous fractures (1 point), and elderliness of ≥70 years (2 points). In the validation set, a treatment decision based on the SAFE ≥ 2 points demonstrated an AUC of 0.65, with a sensitivity/specificity/accuracy of 75.9/54.0/58.9, with an ACR of 0.56 (100.0/11.0/31.0), IOF-ECTS 0.61 (75.9/46.0/52.7), and GC-FRAX 0.62 (82.8/42.0/51.2). Among current GIOP recommendations, the SAFE score serves as an appropriate treatment decision tool with increased accuracy and specificity.

12.
Sci Adv ; 10(8): eadj0347, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394210

ABSTRACT

Hexanucleotide repeat expansion in C9ORF72 (C9) is the most prevalent mutation among amyotrophic lateral sclerosis (ALS) patients. The patients carry over ~30 to hundreds or thousands of repeats translated to dipeptide repeats (DPRs) where poly-glycine-arginine (GR) and poly-proline-arginine (PR) are most toxic. The structure-function relationship is still unknown. Here, we examined the minimal neurotoxic repeat number of poly-GR and found that extension of the repeat number led to a loose helical structure disrupting plasma and nuclear membrane. Poly-GR/PR bound to nucleotides and interfered with transcription. We screened and identified a sulfated disaccharide that bound to poly-GR/PR and rescued poly-GR/PR-induced toxicity in neuroblastoma and C9-ALS-iPSC-derived motor neurons. The compound rescued the shortened life span and defective locomotion in poly-GR/PR expressing Drosophila model and improved motor behavior in poly-GR-injected mouse model. Overall, our results reveal structural and toxicity mechanisms for poly-GR/PR and facilitate therapeutic development for C9-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Mice , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Dipeptides/pharmacology , Arginine/genetics , Sulfates , Drosophila/genetics , DNA Damage , DNA Repeat Expansion , C9orf72 Protein/genetics , C9orf72 Protein/metabolism
13.
J Pediatr Nurs ; 76: 124-131, 2024.
Article in English | MEDLINE | ID: mdl-38382187

ABSTRACT

PURPOSE: The aim of this study was to explore college students' perceptions of human papillomavirus (HPV) infection and their thoughts on prevention measures. DESIGN AND METHODS: A qualitative descriptive design was used. The study adopted purposive sampling at two universities in northern Taiwan and one in central Taiwan. Twenty-six college students participated, and data saturation was reached. Content analysis was undertaken. RESULTS: Four main themes emerged from the data narratives: 1) having very little knowledge of HPV infection, 2) being concerned about outcomes of HPV infection, 3) taking measures to protect oneself, and 4) expecting to have HPV prevention resources. CONCLUSIONS: The results indicated that college students needed a more complete understanding of HPV and prevention methods to protect themselves from infection. Schools were an ideal place to provide adequate information on HPV prevention. PRACTICE IMPLICATIONS: The study suggested providing HPV-related information through school health centers and government health departments to resolve common questions and misunderstandings about HPV infection. Healthcare professionals should have a complete understanding of HPV-related knowledge in order to provide detailed information to young people.


Subject(s)
Health Knowledge, Attitudes, Practice , Papillomavirus Infections , Qualitative Research , Students , Humans , Taiwan , Female , Papillomavirus Infections/prevention & control , Students/psychology , Students/statistics & numerical data , Male , Young Adult , Universities , Adult , Adolescent , Papillomavirus Vaccines/administration & dosage
14.
J Chem Theory Comput ; 20(10): 4229-4238, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38400860

ABSTRACT

Carbon monoxide (CO) is a byproduct of the incomplete combustion of carbon-based fuels, such as wood, coal, gasoline, or natural gas. As incomplete combustion in a fire accident or in an engine, massively produced CO leads to a serious life threat because CO competes with oxygen (O2) binding to hemoglobin and makes people suffer from hypoxia. Although there is hyperbaric O2 therapy for patients with CO poisoning, the nanoscale mechanism of CO dissociation in the O2-rich environment is not completely understood. In this study, we construct the classical force field parameters compatible with the CHARMM for simulating the coordination interactions between hemoglobin, CO, and O2, and use the force field to reveal the impact of O2 on the binding strength between hemoglobin and CO. Density functional theory and Car-Parrinello molecular dynamics simulations are used to obtain the bond energy and equilibrium geometry, and we used machine learning enabled via a feedforward neural network model to obtain the classical force field parameters. We used steered molecular dynamics simulations with a force field to characterize the mechanical strength of the hemoglobin-CO bond before rupture under different simulated O2-rich environments. The results show that as O2 approaches the Fe2+ of heme at a distance smaller than ∼2.8 Å, the coordination bond between CO and Fe2+ is reduced to 50% bond strength in terms of the peak force observed in the rupture process. This weakening effect is also shown by the free energy landscape measured by our metadynamics simulation. Our work suggests that the O2-rich environment around the hemoglobin-CO bond effectively weakens the bonding, so that designing of O2 delivery vector to the site is helpful for alleviating CO binding, which may shed light on de novo drug design for CO poisoning.


Subject(s)
Carbon Monoxide , Hemoglobins , Molecular Dynamics Simulation , Oxygen , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Oxygen/chemistry , Oxygen/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Density Functional Theory , Humans , Protein Binding
15.
Br J Nutr ; 131(10): 1659-1667, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38312003

ABSTRACT

Malnutrition is a key factor in metabolic syndrome (MS) and sarcopenia, assessing the nutritional status of these patients is a pressing issue. The purpose of this study was to clarify sarcopenia and sarcopenic obesity in patients with MS based on nutritional status. This was a case-control study between MS/non-MS. Body composition was measured by dual-energy X-ray absorptiometry. Muscle function was assessed by handgrip strength, five times sit-to-stand test, gait speed test and short physical performance battery (SPPB). The Mini Nutritional Assessment (MNA) was performed to assess the nutritional status in the participants in this study. Overall, a total of 56 % and 13 % of participants suffered from possible sarcopenia and sarcopenia, respectively. There was a higher rate of possible sarcopenic obesity in the MS group than in the non-MS group (48·9 % v. 24·7 %, P < 0·01), and all the sarcopenia participants in the MS group had sarcopenic obesity. MNA score was significantly associated with sarcopenia status (P < 0·01). The MNA combined with body fat score showed better acceptable discrimination for detecting sarcopenic obesity and sarcopenia in MS (AUC = 0·70, 95 % CI 0·53, 0·86). In summary, there was a higher prevalence of possible sarcopenic obesity in MS, and all the MS patients with sarcopenia had sarcopenic obesity in the present study. We suggest that the MNA should be combined with body fat percentage to assess the nutritional status of MS participants, and it also serves as a good indicator for sarcopenia and sarcopenic obesity in MS.


Subject(s)
Adipose Tissue , Body Composition , Hand Strength , Metabolic Syndrome , Nutrition Assessment , Nutritional Status , Obesity , Sarcopenia , Humans , Sarcopenia/etiology , Metabolic Syndrome/complications , Male , Female , Obesity/complications , Middle Aged , Case-Control Studies , Aged , Absorptiometry, Photon , Adult
16.
Biochem Biophys Rep ; 37: 101631, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38188366

ABSTRACT

SIP30, characterized by a coiled-coil functional domain, plays a key role in regulating synaptic vesicle exocytosis and is implicated in neuropathic pain resulting from peripheral nerve injury. Because neuropathic pain is studied in primates (including human), domesticated animals, and rodents, we conducted a phylogenetic analysis of SIP30 in selected species of these three groups of mammals. SIP30 exhibits a high degree of sequence divergence in comparison to its protein binding partners SNAP25 and ZW10, which show broad sequence conservation. Notably, we observed an increased rate of change in the highly conserved coiled-coil domain in the SIP30 protein, specifically within primates. This observation suggests an accelerated adaptation of this functional domain in primate species.

17.
Nanomedicine ; 56: 102728, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061449

ABSTRACT

Cytoreductive surgery remains as the gold standard to treat ovarian cancer, but with limited efficacy since not all tumors can be intraoperatively visualized for resection. We have engineered erythrocyte-derived nano-constructs that encapsulate the near infrared (NIR) fluorophore, indocyanine green (ICG), as optical probes for NIR fluorescence imaging of ovarian tumors. Herein, we have enriched the membrane of these nano-constructs with cholesterol, and functionalized their surface with folic acid (FA) to target the folate receptor-α. Using a mouse model, we show that the average fraction of the injected dose per tumor mass for nano-constructs with both membrane cholesterol enrichment and FA functionalization was ~ sixfold higher than non-encapsulated ICG, ~ twofold higher than nano-constructs enriched with cholesterol alone, and 33 % higher than nano-constructs with only FA functionalization at 24-h post-injection. These results suggest that erythrocyte-derived nano-constructs containing both cholesterol and FA present a platform for improved fluorescence imaging of ovarian tumors.


Subject(s)
Folic Acid , Ovarian Neoplasms , Humans , Female , Folic Acid/pharmacology , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Erythrocytes , Indocyanine Green , Optical Imaging/methods , Cell Line, Tumor
18.
Hypertens Res ; 47(2): 445-454, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37935905

ABSTRACT

We investigated the potential diagnostic value of the myocardial work indices based on speckle tracking echocardiography for cardiac fibrosis in patients with primary aldosteronism. Our observational study included 48 patients with primary aldosteronism. We performed conventional echocardiography and the left ventricular pressure-strain loop analysis. We also performed cardiac magnetic resonance imaging to evaluate cardiac replacement fibrosis defined as late gadolinium enhancement (LGE). Patients with LGE (n = 30, 62.5%) had longer duration of hypertension and higher plasma NT-proBNP than those without LGE. Besides, they had a significantly (P ≤ 0.04) higher left ventricular mass index (121.3 ± 19.5 vs. 103.3 ± 20.0 g/m2) and global wasted work (205 ± 78 vs. 141 ± 36 mmHg%) and lower global longitudinal strain (-17.7 ± 1.8 vs. -19.0 ± 2.4%) and work efficiency (GWE, 90.9 ± 2.4 vs. 93.8 ± 1.5%). Receiver Operating Characteristics analysis showed that GWE ≤ 92% had a sensitivity and specificity of 76.7% and 83.3%, respectively, for LGE with the area under curve 0.85 (P < 0.001). In conclusion, both cardiac structure and function were impaired in patients with primary aldosteronism and cardiac fibrosis. The myocardial work index GWE showed significant value for the indication of cardiac fibrosis. Characterization of cardiac fibrosis in primary aldosteronism and the detective value of clinical and echocardiographic indices. Cardiac fibrosis was presented in 30 of the 48 analyzed primary aldosteronism patients with focal high signal intensity in mid-layer myocardium in limited segments as its characterization. The global work efficiency (GWE) had a significantly higher detective value for myocardial replacement fibrosis than other measurements such as left ventricular mass index (LVMI) and NT-proBNP.


Subject(s)
Cardiomyopathies , Hyperaldosteronism , Humans , Contrast Media , Ventricular Pressure , Magnetic Resonance Imaging, Cine/methods , Gadolinium , Myocardium/pathology , Magnetic Resonance Imaging , Fibrosis , Hyperaldosteronism/complications , Hyperaldosteronism/diagnostic imaging , Hyperaldosteronism/pathology , Ventricular Function, Left
19.
J Cell Mol Med ; 28(2): e18031, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937809

ABSTRACT

Approximately 10%-15% of couples worldwide are infertile, and male factors account for approximately half of these cases. Teratozoospermia is a major cause of male infertility. Although various mutations have been identified in teratozoospermia, these can vary among ethnic groups. In this study, we performed whole-exome sequencing to identify genetic changes potentially causative of teratozoospermia. Out of seven genes identified, one, ATP/GTP Binding Protein 1 (AGTPBP1), was characterized, and three missense changes were identified in two patients (Affected A: p.Glu423Asp and p.Pro631Leu; Affected B: p.Arg811His). In those two cases, severe sperm head and tail defects were observed. Moreover, AGTPBP1 localization showed a fragmented pattern compared to control participants, with specific localization in the neck and annulus regions. Using murine models, we found that AGTPBP1 is localized in the manchette structure, which is essential for sperm structure formation. Additionally, in Agtpbp1-null mice, we observed sperm head and tail defects similar to those in sperm from AGTPBP1-mutated cases, along with abnormal polyglutamylation tubulin and decreasing △-2 tubulin levels. In this study, we established a link between genetic changes in AGTPBP1 and human teratozoospermia for the first time and identified the role of AGTPBP1 in deglutamination, which is crucial for sperm formation.


Subject(s)
Infertility, Male , Serine-Type D-Ala-D-Ala Carboxypeptidase , Teratozoospermia , Humans , Male , Animals , Mice , Teratozoospermia/genetics , Teratozoospermia/metabolism , Tubulin/metabolism , Semen/metabolism , Spermatozoa/metabolism , Sperm Head/metabolism , Flagella/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Mutation , GTP-Binding Proteins/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
20.
ACS Omega ; 8(48): 45976-45984, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075796

ABSTRACT

Adsorptive desulfurization (ADS) was a hopeful method for deep desulfurization of oil in mild conditions. In this paper, based on the alkaline-earth (AE) metal-modified Y zeolite (AEY), synthesis, systematic characterization, ADS performance test, and analysis of related adsorption mechanisms were carried out. The crystal and pore structure of Y zeolite were not damaged after ion exchange of AE, while the amount of acid sites and the ratio of Lewis/Bronsted acid sites were both decreased. Although surface acid sites on zeolites were believed to be active sites for ADS, the performance test results showed that AEY adsorbents had rather good S adsorption capacity compared to NaY. Moreover, the S adsorption selectivity in the presence of hexene-1 in oil was also desirable for all AEY adsorbents. Based on these experimental results and previously proposed mechanisms for S-containing compound adsorption, a new adsorption mechanism was proposed for AEY, and this mechanism was further supported by the aid of DFT calculations. The good S-removal performance of AEY adsorbents as well as the new proposed adsorption mechanism may help people design and synthesize further improved S-compound adsorbents for ADS processes in an oil refinery.

SELECTION OF CITATIONS
SEARCH DETAIL
...