Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1724: 464929, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38669942

ABSTRACT

When purifying mAb from serum-containing hybridoma culture supernatant, it is essential that mouse IgG remains free from contaminations of bovine IgG. However, the broadly used Protein A resin cannot achieve this goal due to binding between both mouse and bovine IgG. Here, a novel nanobody-based affinity purification magnetic beads that discriminates mouse IgG from bovine IgG was developed. To bind all subtypes of mouse IgG (IgG1, IgG2a, IgG2b and IgG3) that contain the kappa light chain, mCK (mouse kappa constant region)-specific nanobody binders were selected from an immune phage display VHH library; this library was constructed with peripheral blood mononuclear cells (PBMCs), which were collected from Bactrian camels immunized with a mix of intact mouse IgGs (IgG1, IgG2a, IgG2b and IgG3). A novel clone that exhibited a higher expression level and a higher binding affinity was selected (4E6). Then, the 4E6 nanobody in the format of VHH-hFC (human Fc) was conjugated on magnetic beads with a maximal binding capacity of 15.41±0.69 mg mouse IgG/mL beads. Furthermore, no bovine IgG could be copurified from hybridoma culture supernatant with immunomagnetic beads. This approach is valuable for the large-scale in vitro production of highly pure antibodies by hybridoma cells.


Subject(s)
Antibodies, Monoclonal , Animals , Cattle , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Camelus , Chromatography, Affinity/methods , Hybridomas , Immunoglobulin Constant Regions/chemistry , Immunoglobulin G/isolation & purification , Immunoglobulin G/immunology , Immunoglobulin kappa-Chains/immunology , Immunoglobulin kappa-Chains/chemistry , Peptide Library , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/isolation & purification
2.
Plant Dis ; 98(3): 384-388, 2014 Mar.
Article in English | MEDLINE | ID: mdl-30708449

ABSTRACT

Development of effective alternative soil fumigants is essential to the phasing out of methyl bromide (MeBr) while keeping major soilborne pathogens under control. Here, we report on the laboratory studies and field trials evaluating methyl iodide (MeI) and chloropicrin (Pic) for control of major soilborne ginger (Zingiber officinale) pathogens Ralstonia solanacearum, Pythium spp., Fusarium oxysporum, and Meloidogyne incognita in Shandong province of China. Laboratory studies indicated that MeI at 24 mg/kg of soil was most effective, reducing four pathogens by >90%. Treatments with MeI+Pic at 12 mg/kg (1:3 and 1:5) also reduced these pathogens by >82%. In the field trials, MeI at 30 or 40 g/m2 and MeI+Pic (1:3) at 40 g/m2 yielded excellent long-term control of all target pathogens. These treatments allowed ginger plants to maintain vigorous growth and produce a greater number of tillers (>12 per plant), and increased ginger yields by >80% compared with the nontreated controls. MeI at a reduced rate of 20 g/m2 or Pic at 40 g/m2 provided levels of disease control similar to MeBr. These studies demonstrated that injection treatments with MeI at 30 and 40 g/m2, and MeI+Pic (1:3) at 40 g/m2, followed by covering with virtually impermeable film, are effective alternatives of soil fumigation for control of the major ginger pathogens in Shandong.

SELECTION OF CITATIONS
SEARCH DETAIL
...