Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.752
Filter
1.
Nat Commun ; 15(1): 8098, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285174

ABSTRACT

Doping of a Mott insulator gives rise to a wide variety of exotic emergent states, from high-temperature superconductivity to charge, spin, and orbital orders. The physics underpinning their evolution is, however, poorly understood. A major challenge is the chemical complexity associated with traditional routes to doping. Here, we study the Mott insulating CrO2 layer of the delafossite PdCrO2, where an intrinsic polar catastrophe provides a clean route to doping of the surface. From scanning tunnelling microscopy and angle-resolved photoemission, we find that the surface stays insulating accompanied by a short-range ordered state. From density functional theory, we demonstrate how the formation of charge disproportionation results in an insulating ground state of the surface that is disparate from the hidden Mott insulator in the bulk. We demonstrate that voltage pulses induce local modifications to this state which relax over tens of minutes, pointing to a glassy nature of the charge order.

2.
Angew Chem Int Ed Engl ; : e202411105, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239776

ABSTRACT

Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.

3.
J Formos Med Assoc ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168745

ABSTRACT

BACKGROUND/AIMS: Hepatitis C virus (HCV) eradication using antiviral agents augments the metabolic profile. Changes in glycated hemoglobin (HbA1c) levels in chronic hepatitis C patients who receive glecaprevir/pibrentasvir (GLE/PIB) remain elusive. METHODS: Data from 2417 patients treated with GLE/PIB from the Taiwan HCV Registry were analyzed, and pretreatment HbA1c levels were compared with 3-months after the-end-of treatment levels. A sustained virological response (SVR) was defined as undetectable HCV RNA at 12 weeks after the end of treatment. A significant change in HbA1c level was defined as the 75th percentile of the change in the HbA1c level before and after treatment (decrement >0.2%). RESULTS: Serum HbA1c levels decreased significantly (6.0 vs 5.9%, P < 0.001). Post-treatment HbA1c levels decreased in all subgroups, except in non-SVR patients (5.7 vs 5.7%, P = 0.79). Compared to patients without significant HbA1c improvement (decrement >0.2%), those with HbA1c improvement were older (60.2 vs 58.6 years, P < 0.001), had higher serum creatinine levels (1.9 vs 1.6 mg/dL, P < 0.001), triglycerides (129.8 vs 106.2 mg/dL, P < 0.001), fasting glucose (135.8 vs 104.0 mg/dL, P < 0.001), and pretreatment HbA1c (7.1 vs 5.7%, P < 0.001) and had a higher proportion of male sex (57.9% vs 50.9%, P = 0.003), diabetes (84.3 vs 16.8%, P < 0.001), more advanced stages of chronic kidney disease (CKD) (15.7 vs 11.1 %, P < 0.001), anti-diabetic medication use (47.3 vs 16.4%, P < 0.001) and fatty liver (49.6 vs 38.3 %, P < 0.001). Multivariate analysis revealed that the factors associated with significant HbA1c improvement were age (odds ratio [OR]/95% confidence intervals [CI]: 1.01/1.00-1.02, P = 0.01), HbA1c level (OR/CI: 2.83/2.48-3.24, P < 0.001) and advanced CKD stages (OR/CI: 1.16/1.05-1.28, P = 0.004). If the HbA1c variable was not considered, the factors associated with significant HbA1c improvement included alanine aminotransferase level (OR/CI, 1.002/1.000-1.004, P = 0.01), fasting glucose level (OR/CI: 1.010/1.006-1.013, P < 0.001), and diabetes (OR/CI: 3.35/2.52-4.45, P < 0.001). CONCLUSIONS: The HbA1c levels improved shortly after HCV eradication using GLE/PIB. The improvement in glycemic control can be generalized to all subpopulations, particularly in patients with a higher baseline HbA1c level or diabetes.

4.
Adv Sci (Weinh) ; : e2401420, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162002

ABSTRACT

As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. FeV-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp3)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.r.). Mechanistic studies including density functional theory (DFT) calculations and intermolecular hydrogen atom abstraction (HAA) reactions reveal key reactive FeV-alkylimido intermediates. The [FeV(Cor)(NAd)] (Ad = adamantyl) complex is independently prepared and characterized through electron paramagnetic resonance (EPR), resonance Raman (rR) measurement, and X-ray photoelectron spectroscopy (XPS). This complex is reactive toward HAA reactions with kinetic isotope effects (KIEs) similar to [Fe(Cor)]-catalyzed intramolecular C─H amination of alkyl azides.

5.
Breast Cancer ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190284

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common cancer in women and accounts for approximately 15% of all cancer deaths among women globally. The underlying mechanism of BC patients with small tumor size and developing distant metastasis (DM) remains elusive in clinical practices. METHODS: We integrated the gene expression of BCs from ten RNAseq datasets from Gene Expression Omnibus (GEO) database to create a genetic prediction model for distant metastasis-free survival (DMFS) in BC patients with small tumor sizes (≤ 2 cm) using weighted gene co-expression network (WGCNA) analysis and LASSO cox regression. RESULTS: ABHD11, DDX39A, G3BP2, GOLM1, IL1R1, MMP11, PIK3R1, SNRPB2, and VAV3 were hub metastatic genes identified by WGCNA and used to create a risk score using multivariable Cox regression. At the cut-point value of the median risk score, the high-risk score (≥ median risk score) group had a higher risk of DM than the low-risk score group in the training cohort [hazard ratio (HR) 4.51, p < 0.0001] and in the validation cohort (HR 5.48, p = 0.003). The nomogram prediction model of 3-, 5-, and 7-year DMFS shows good prediction results with C-indices of 0.72-0.76. The enriched pathways were immune regulation and cell-cell signaling. EGFR serves as the hub gene for the protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3. CONCLUSION: Prognostic gene signature was predictive of DMFS for BCs with small tumor sizes. The protein-protein interaction network of PIK3R1, IL1R1, MMP11, GOLM1, and VAV3 connected by EGFR merits further experiments for elucidating the underlying mechanisms.

6.
J Am Chem Soc ; 146(32): 22600-22611, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39101597

ABSTRACT

Atomically precise synthesis of three-dimensional boron-nitrogen (BN)-based helical structures constitutes an undeveloped field with challenges in synthetic chemistry. Herein, we synthesized and comprehensively characterized a new class of helical molecular carbons, named benzo-extended [n]heli(aminoborane)s ([n]HABs), in which the helical structures consisted of n = 8 and n = 10 ortho-condensed conjugated rings with alternating BN atoms at the inner rims. X-ray crystallographic analysis, photophysical studies, and density functional theory calculations revealed the unique characteristics of this novel [n]HAB system. Owing to the high enantiomerization energy barriers, the optical resolution of [8]HAB and [10]HAB was achieved with chiral high-performance liquid chromatography. The isolated enantiomers of [10]HAB exhibited record absorption and luminescence dissymmetry factors (|gabs|=0.061; |glum|=0.048), and boosted CPL brightness up to 292 M-1 cm-1, surpassing most helicene derivatives, demonstrating that the introduction of BN atoms into the inner positions of helicenes can increase both the |gabs| and |glum| values.

7.
J Phys Chem C Nanomater Interfaces ; 128(33): 14100-14106, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39193256

ABSTRACT

Using scanning tunneling microscopy (STM), we investigate the spatial distribution of the bridging hydroxyl (OHb) bound excess electrons on the rutile TiO2(110) surface and its temperature dependence. By performing simultaneously recorded empty and filled state imaging on single OHbs at different temperatures in STM, we determine that the spatial distribution of the OHb bound excess electrons retains a symmetric four-lobe structure around the OHb at both 78 and 7 K. This indicates that OHbs are much weaker charge traps compared to bridging O vacancies (Ob-vac). In addition, by sequentially removing the capping H of each OHb using voltage pulses, we find that the annihilation of each OHb is accompanied by the disappearance of some lobes in the filled state STM, thus verifying the direct correlation between OHbs and their excess electrons.

8.
Angew Chem Int Ed Engl ; : e202406497, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031496

ABSTRACT

Heteroatom-embedded helical nanographenes (NGs) constitute an important and appealing class of intrinsically chiral materials. In this work, a series of B,N-embedded helical NGs bearing azepines was synthesized via stepwise regioselective cyclodehydrogenation. First, the phenyl- or nitrogen-bridged dimers were efficiently clipped into highly congested model compounds 1 and 2. Later, the controllable Scholl reactions of the tetraphenyl-tethered precursor generated 1, 7 or 8 new C‒C bonds, thereby establishing a robust method for the preparation of nonalternant BN-HNGs with up to 31 fused rings. The helical bilayer nature was unambiguously verified by X-ray diffraction analysis. The helical chirality was transferred to the stereogenic boron centers upon fluoride coordination, with a concave-concave structure to comply with the bilayer skeleton. Notably, the largest nonalternant BN-HNG (6) spontaneously resolved into a homochiral 41 helix structure as a molecular spiral staircase during crystallization via conglomerate formation at the single-crystal scale. The large twisted C2-symmetric pi-surface and the dynamic chiral skeleton induced by curved azepines might have synergistic effects on self-recognition of enantiomers of 6 to achieve the intriguing spontaneous resolution behavior. The chiroptical properties of the enantiomer of 6 were further investigated, revealing that 6 had a strong chiroptical response in the visible range (400-700 nm).

9.
Front Plant Sci ; 15: 1417504, 2024.
Article in English | MEDLINE | ID: mdl-38947951

ABSTRACT

Improving the nutrient content of red soils in southern China is a priority for efficient rice production there. To assess the effectiveness of oilseed rape as green manure for the improvement of soil phosphorus nutrient supply and rice yield in red soil areas, a long-term field plot experiment was conducted comparing two species of rape, Brassica napus (BN) and Brassica juncea (BJ). The effects of returning oilseed rape on soil phosphorus availability, phosphorus absorption, and yield of subsequent rice under rice-green manure rotation mode were analyzed, using data from the seasons of 2020 to 2021. The study found that compared with winter fallow treatment (WT) and no-tillage treatment (NT), the soil available phosphorus content of BN was increased, and that of BJ was significantly increased. The content of water-soluble inorganic phosphorus of BJ increased, and that of BN increased substantially. Compared with the WT, the soil organic matter content and soil total phosphorus content of BN significantly increased, as did the soil available potassium content of BJ, and the soil total phosphorus content of BJ was significantly increased compared with NT. The soil particulate phosphorus content of BJ and BN was significantly increased by 14.00% and 16.00%, respectively. Compared with the WT, the phosphorus activation coefficient of BJ was significantly increased by 11.41%. The rice plant tiller number under the green manure returning treatment was significantly increased by 43.16% compared with the winter fallow treatment. The green manure returning measures increased rice grain yield by promoting rice tiller numbers; BN increased rice grain yield by 9.91% and BJ by 11.68%. Based on these results, returning oilseed rape green manure could augment the phosphorus nutrients of red soil and promote phosphorus availability. Rice-oilseed rape green manure rotation could increase rice grain yield.

10.
Dig Dis Sci ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965159

ABSTRACT

BACKGROUND: Chronic hepatitis C (CHC) increases the risk of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). This nationwide cohort study assessed the effectiveness of viral eradication of CHC. METHODS: The Taiwanese chronic hepatitis C cohort and Taiwan hepatitis C virus (HCV) registry are nationwide HCV registry cohorts incorporating data from 23 and 53 hospitals in Taiwan, respectively. This study included 27,577 individuals from these cohorts that were given a diagnosis of CHC and with data linked to the Taiwan National Health Insurance Research Database. Patients received either pegylated interferon and ribavirin or direct-acting antiviral agent therapy for > 4 weeks for new-onset LC and liver-related events. RESULTS: Among the 27,577 analyzed patients, 25,461 (92.3%) achieved sustained virologic response (SVR). The mean follow-up duration was 51.2 ± 48.4 months, totaling 118,567 person-years. In the multivariable Cox proportional hazard analysis, the hazard ratio (HR) for incident HCC was 1.39 (95% confidence interval [CI]: 1.00-1.95, p = 0.052) among noncirrhotic patients without SVR compared with those with SVR and 1.82 (95% CI 1.34-2.48) among cirrhotic patients without SVR. The HR for liver-related events, including HCC and decompensated LC, was 1.70 (95% CI 1.30-2.24) among cirrhotic patients without SVR. Patients with SVR had a lower 10-year cumulative incidence of new-onset HCC than those without SVR did (21.7 vs. 38.7% in patients with LC, p < 0.001; 6.0 vs. 18.4% in patients without LC, p < 0.001). CONCLUSION: HCV eradication reduced the incidence of HCC in patients with and without LC and reduced the incidence of liver-related events in patients with LC.

11.
Chem Sci ; 15(29): 11272-11278, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39055004

ABSTRACT

Bispecific antibodies are artificial molecules that fuse two different antigen-binding sites of monoclonal antibodies into one single entity. They have emerged as a promising next-generation anticancer treatment. Despite the fascinating applications of bispecific antibodies, the design and production of bispecific antibodies remain tedious and challenging, leading to a long R&D process and high production costs. We herein report an unprecedented strategy to cyclise and conjugate tumour-targeting peptides on the surface of a monoclonal antibody to form a novel type of bispecific antibody, namely the peptidic bispecific antibody (pBsAb). Such design combines the merits of highly specific monoclonal antibodies and serum-stable cyclic peptides that endows an additional tumour-targeting ability to the monoclonal antibody for binding with two different antigens. Our results show that the novel pBsAb, which comprises EGFR-binding cyclic peptides and an anti-SIRP-α monoclonal antibody, could serve as a macrophage-engaging bispecific antibody to initiate enhanced macrophage-cancer cell interaction and block the "don't eat me" signal between CD47-SIRP-α, as well as promoting antibody-dependent cellular phagocytosis and 3D cell spheroid infiltration. These findings give rise to a new type of bispecific antibody and a new platform for the rapid generation of new bispecific antibodies for research and potential therapeutic uses.

13.
Obes Surg ; 34(7): 2317-2328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851646

ABSTRACT

INTRODUCTION: This study aimed to evaluate the impact of achieving < 37.7% excess body-weight loss (EBWL) within 3 months of postlaparoscopic sleeve gastrectomy (LSG) on clinical outcomes and its correlation with adipocyte function. METHODS: Patients (n = 176) who underwent LSG between January 2019 and January 2023 were included. Weight loss and status of health markers were monitored postoperatively. The cohort was stratified based on EBWL < 37.7% at 3 months or not. Variables including neutrophil-to-lymphocyte ratio (NLR), insulin resistance, and comorbidities were analyzed. Omental visceral and subcutaneous adipose tissue samples were used to analyze the differences in adipocyte function by western blot. RESULTS: Patients with EBWL < 37.7% at 3 months post-LSG (suboptimal group) comprised less likelihood of achieving ≥ 50% EBWL than those who achieved ≥ 37.7% EBWL (optimal group) at 6 months (42.55% vs. 95.52% in optimal group, p < 0.001), 12 months (85.11% vs. 99.25% in optimal group, p < 0.001) and 24 months (77.14% vs. 94.74% in optimal group, p = 0.009) post-LSG. High BMI (OR = 1.222, 95% CI 1.138-1.312, p < 0.001), NLR ≥ 2.36 (OR = 2.915, 95% CI 1.257-6.670, p = 0.013), and female sex (OR = 3.243, 95% CI 1.306-8.051, p = 0.011) significantly predicted EBWL < 37.7% at 3 months post-LSG. Patients with NLR ≥ 2.36 had significantly lower adipose triglyceride lipase in omental fat (p = 0.025). CONCLUSION: EBWL < 37.7% at 3 months post-LSG is a strong predictor of subsequent suboptimal weight loss. High BMI, NLR ≥ 2.36, and female sex are risk factors in predicting EBWL < 37.7% at 3 months post-LSG. These findings may offer a reference to apply adjuvant weight loss medications to patients who are predisposed to suboptimal outcomes.


Subject(s)
Gastrectomy , Laparoscopy , Lymphocytes , Neutrophils , Obesity, Morbid , Weight Loss , Humans , Female , Male , Weight Loss/physiology , Adult , Risk Factors , Obesity, Morbid/surgery , Middle Aged , Adipocytes , Treatment Outcome , Retrospective Studies
14.
Proc Natl Acad Sci U S A ; 121(25): e2316615121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861602

ABSTRACT

Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 µM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.


Subject(s)
Antineoplastic Agents , Iridium , Methane , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Iridium/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology , Microfilament Proteins/metabolism , Neoplasm Metastasis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays , Male
15.
Microb Pathog ; 192: 106715, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810767

ABSTRACT

Porcine circovirus type 3 (PCV3) has become an important pathogen in the global swine industry and poses a threat to pig health, but its pathogenic mechanism remains unknown. In this study, we constructed an innovative, linear infectious clone of PCV3 for rescuing the virus, and explored the transcriptome of infected cells to gain insights into its pathogenic mechanisms. Subsequently, an in vivo experiment was conducted to evaluate the pathogenicity of the rescued virus in pig. PCV3 nucleic acid was distributed across various organs, indicating systemic circulation via the bloodstream and viremia. Immunohistochemical staining also revealed a significant presence of PCV3 antigens in the spleen, lungs, and lymph nodes, indicating that PCV3 had tropism for these organs. Transcriptome analysis of infected ST cells revealed differential expression of genes associated with apoptosis, immune responses, and cellular metabolism. Notably, upregulation of genes related to the hypoxia-inducible factor-1 pathway, glycolysis, and the AGE/RAGE pathway suggests activation of inflammatory responses, ultimately leading to onset of disease. These findings have expanded our understanding of PCV3 pathogenesis, and the interplay between PCV3 and host factors.


Subject(s)
Circoviridae Infections , Circovirus , Gene Expression Profiling , Swine Diseases , Animals , Swine , Circovirus/genetics , Circovirus/pathogenicity , Circovirus/physiology , Circoviridae Infections/virology , Circoviridae Infections/veterinary , Swine Diseases/virology , Transcriptome , Cell Line , Apoptosis/genetics , Lung/virology , Lung/pathology
16.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38821103

ABSTRACT

Layered materials with kagome lattice have attracted a lot of attention due to the presence of nontrivial topological bands and correlated electronic states with tunability. In this work, we investigate a unique van der Waals (vdW) material system,A2M3X4(A= K, Rb, Cs;M= Ni, Pd;X= S, Se), where transition metal kagome lattices, chalcogen honeycomb lattices and alkali metal triangular lattices coexist simultaneously. A notable feature of this material is that each Ni/Pd atom is positioned in the center of four chalcogen atoms, forming a local square-planar environment. This crystal field environment results in a low spin stateS= 0 of Ni2+/Pd2+. A systematic study of the crystal growth, crystal structure, magnetic and transport properties of two representative compounds, Rb2Ni3S4and Cs2Ni3Se4, has been carried out on powder and single crystal samples. Both compounds exhibit nonmagneticp-type semiconducting behavior, closely related to the particular chemical environment of Ni2+ions and the alkali metal intercalated vdW structure. Additionally, Cs2Ni3Se4undergoes an insulator-metal transition (IMT) in transport measurements under pressure up to 87.1 GPa without any structural phase transition, while Rb2Ni3S4shows the tendency to be metalized.

17.
Article in English | MEDLINE | ID: mdl-38700794

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-ß1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-ß/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.

18.
J Am Chem Soc ; 146(23): 16161-16172, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38720418

ABSTRACT

Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.

19.
Behav Sci (Basel) ; 14(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38785886

ABSTRACT

(1) Background: Early interventions may effectively reduce the risk of mental disorders in individuals with ultra-high risk. Specifying the health needs of individuals with ultra-high risk is crucial before the implementation of successful early intervention. This study aimed to explore the differences in lifestyles, mental risks, and physical indices among individuals with ultra-high risk, patients with schizophrenia, and healthy subjects. (2) Methods: A cross-section design applying seven questionnaires with physical examinations for 144 participants aged 13-45 years old was conducted in this study. The questionnaires included one about personal data, four on mental risks, and two for lifestyles. (3) Results: The individuals with ultra-high risk scored similarly in many dimensions as the patients with schizophrenia, but they displayed lower positive symptoms, lower negative symptoms, lower prodromal symptoms, higher interpersonal deficits, lower nutrition intake, and higher levels of exercise than the patients with schizophrenia. Female individuals with ultra-high risk had lower self-esteem, higher positive symptoms, lower nutrition intake, and higher exercise levels than male ones. (4) Conclusions: The study pinpointed specific health needs with interpersonal deficits, nutrition intake, and physical activity for the individuals with ultra-high risk. Future interventions targeted on improving social function, dietary pattern, and exercise will be beneficial.

20.
Chem Sci ; 15(14): 5349-5359, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577372

ABSTRACT

Silver compounds have favorable properties as promising anticancer drug candidates, such as low side effects, anti-inflammatory properties, and high potential to overcome drug resistance. However, the exact mechanism by which Ag(i) confers anticancer activity remains unclear, which hinders further development of anticancer applications of silver compounds. Here, we combine thermal proteome profiling, cysteine profiling, and ubiquitome profiling to study the molecular mechanisms of silver(i) complexes supported by non-toxic thiourea (TU) ligands. Through the formation of AgTU complexes, TU ligands deliver Ag+ ions to cancer cells and tumour xenografts to elicit inhibitory potency. Our chemical proteomics studies show that AgTU acts on the ubiquitin-proteasome system (UPS) and disrupts protein homeostasis, which has been identified as a main anticancer mechanism. Specifically, Ag+ ions are released from AgTU in the cellular environment, directly target the 19S proteasome regulatory complex, and may oxidize its cysteine residues, thereby inhibiting proteasomal activity and accumulating ubiquitinated proteins. After AgTU treatment, proteasome subunits are massively ubiquitinated and aberrantly aggregated, leading to impaired protein homeostasis and paraptotic death of cancer cells. This work reveals the unique anticancer mechanism of Ag(i) targeting the 19S proteasome regulatory complex and opens up new avenues for optimizing silver-based anticancer efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL