Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Adv Healthc Mater ; 13(18): e2303872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837670

ABSTRACT

Brain-on-Chip devices, which facilitate on-chip cultures of neurons to simulate brain functions, are receiving tremendous attention from both fundamental and clinical research. Consequently, microsensors are being developed to accomplish real-time monitoring of neurotransmitters, which are the benchmarks for neuron network operation. Among these, electrochemical sensors have emerged as promising candidates for detecting a critical neurotransmitter, dopamine. However, current state-of-the-art electrochemical dopamine sensors are suffering from issues like limited sensitivity and cumbersome fabrication. Here, a novel route in monolithically microfabricating vertically aligned carbon nanofiber electrochemical dopamine microsensors is reported with an anti-blistering slow cooling process. Thanks to the microfabrication process, microsensors is created with complete insulation and large surface areas. The champion device shows extremely high sensitivity of 4.52× 104 µAµM-1·cm-2, which is two-orders-of-magnitude higher than current devices, and a highly competitive limit of detection of 0.243 nM. These remarkable figures-of-merit will open new windows for applications such as electrochemical recording from a single neuron.


Subject(s)
Carbon , Dopamine , Electrochemical Techniques , Nanofibers , Dopamine/analysis , Nanofibers/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
2.
Wound Repair Regen ; 32(4): 511-516, 2024.
Article in English | MEDLINE | ID: mdl-38415502

ABSTRACT

Self-improving dystrophic epidermolysis bullosa (DEB) is a genodermatosis that is inherited autosomal dominantly or recessively, and its clinical symptoms may improve or subside spontaneously. Herein, we report a case of self-improving DEB with COL7A1 p.Gly2025Asp variant. The diagnosis was made through histopathological, electron microscopic examination, and genetic testing. The same variant is also noted on his father, who presents with dystrophic toenails without any blisters. This study highlights that idiopathic nail dystrophy could be linked to congenital or hereditary disease. Furthermore, we conducted a review of the literature on the characteristics of reported cases of self-improving DEB with a personal or family history of nail dystrophy. The results supported our findings that nail dystrophy may be the sole manifestation in some family members. We suggest that individuals suffering from idiopathic nail dystrophy may seek genetic counselling when planning pregnancy to early evaluate the potential risk of hereditary diseases.


Subject(s)
Collagen Type VII , Epidermolysis Bullosa Dystrophica , Mutation, Missense , Humans , Epidermolysis Bullosa Dystrophica/genetics , Collagen Type VII/genetics , Male , Taiwan , Heterozygote , Pedigree , Female , Adult , Nail Diseases/genetics
3.
Cardiovasc Res ; 120(2): 203-214, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38252891

ABSTRACT

AIMS: Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS: In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION: IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.


Subject(s)
Exosomes , Hypertension, Pulmonary , Induced Pluripotent Stem Cells , Pulmonary Arterial Hypertension , Rats , Animals , Mice , Pulmonary Arterial Hypertension/metabolism , Induced Pluripotent Stem Cells/metabolism , Vascular Remodeling , Exosomes/metabolism , Fibroblasts/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Pulmonary Artery , Monocrotaline/adverse effects , Monocrotaline/metabolism , Cell Proliferation , Disease Models, Animal , Core Binding Factor Alpha 1 Subunit/metabolism
4.
J Cell Physiol ; 238(10): 2316-2334, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37724600

ABSTRACT

Vibrio vulnificus, a gram-negative bacterium, causes serious wound infections and septicemia. Once it develops into early phase sepsis, hyperinflammatory immune responses result in poor prognosis in patients. The present study aimed to examine the possible underlying pathogenic mechanism and explore potential agents that could protect against V. vulnificus cytotoxicity. Here, we report that infection of mouse macrophages with V. vulnificus triggers antiphagocytic effects and pyroptotic inflammation via ATP-mediated purinergic P2X7 receptor (P2X7R) signaling. V. vulnificus promoted P2X7-dependent nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 translocation, modulating the expression of the inflammasome sensor NLR family pyrin domain containing 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a card (ASC), and pyroptotic protein gasdermin D (GSDMD) in mouse macrophages. V. vulnificus induced the NLRP3/caspase-1 inflammasome signaling complex expression that drives GSDMD transmembrane pore formation and secretion of interleukin (IL)-1ß, IL-18, and macrophage inflammatory protein-2 (MIP-2). This effect was blocked by P2X7R antagonists, indicating that the P2X7R mediates GSDMD-related pyroptotic inflammation in macrophages through the NF-κB/NLRP3/caspase-1 signaling pathway. Furthermore, blockade of P2X7R reduced V. vulnificus-colony-forming units in the spleen, immune cell infiltration into the skin and lung tissues, and serum concentrations of IL-1ß, IL-18, and MIP-2 in mice. These results indicate that P2X7R plays a vital role in mediating phagocytosis by macrophages and pyroptotic inflammation during V. vulnificus infection and provides new opportunities for therapeutic intervention in bacterial infections.

5.
Cardiol J ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37772357

ABSTRACT

BACKGROUND: Current guideline-recommended multiparameters used to assess the risk levels of pulmonary arterial hypertension (PAH) are invasive hemodynamic measurements or effort-dependent exercise tests. Serum natriuretic peptide is only one kind of effort-free biomarker that has been adopted for risk assessment. This study aimed to investigate the application of homocysteine as a non-invasive and effort-free measurement for the risk assessment of patients with PAH. METHODS: Samples of 50 patients diagnosed with PAH via right heart catheterization were obtained, and the patients were divided into low-, intermediate- and high-risk groups for further analysis. Additionally, serum N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) and homocysteine levels of monocrotaline (MCT)-induced PAH rats were analyzed at each week with progressed severity of PAH, and they were sacrificed on day 28 with pathology being assessed. RESULTS: Hyperhomocysteinemia was an independent predictor (odds ratio [OR]: 1.256; 95% confidence interval [CI]: 1.002-1.574) and showed a linear correlation with NT-proBNP. Hyperhomocysteinemia could discriminate between low/intermediate and high-risk levels in PAH with a cut-off value in 12 µmol/L. Moreover, the elevated homocysteine levels by weeks in MCT rats also demonstrated the association between homocysteine and the severity of PAH. CONCLUSIONS: Homocysteine can be a non-invasive and effort-free risk assessment for patients with pulmonary hypertension. Homocysteine level had a linear correlation with NT-proBNP level, and patients with hyperhomocysteinemia had a higher risk level, higher NT-proBNP level, and decreased lower diffusing capacity for carbon monoxide. The correlation between homocysteine level and PAH severity was also demonstrated in MCT rats.

6.
Soft comput ; 27(14): 9321-9345, 2023.
Article in English | MEDLINE | ID: mdl-37287571

ABSTRACT

With the continuous depletion of global fossil energy, optimizing the energy structure has become the focus of attention of all countries. With the support of policy and finance, renewable energy occupies an important position in the energy structure of the USA. Being able to predict the trend of renewable energy consumption in advance plays a vital role in economic development and policymaking. Aiming at the small and changeable annual data of renewable energy consumption in the USA, a fractional delay discrete model of variable weight buffer operator based on grey wolf optimizer is proposed in this paper. Firstly, the variable weight buffer operator method is used to preprocess the data, and then, a new model is constructed by using the discrete modeling method and the concept of fractional delay term. The parameter estimation and time response formula of the new model are deduced, and it is proved that the new model combined with the variable weight buffer operator satisfies the new information priority principle of the final modeling data. The grey wolf optimizer is used to optimize the order of the new model and the weight of the variable weight buffer operator. Based on the renewable energy consumption data of solar energy, total biomass energy and wind energy in the field of renewable energy, the grey prediction model is established. The results show that the model has better prediction accuracy, adaptability and stability than the other five models mentioned in this paper. According to the forecast results, the consumption of solar and wind energy in the USA will increase incrementally in the coming years, while the consumption of biomass will decrease year by year.

7.
Macromol Biosci ; 23(10): e2300145, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37279400

ABSTRACT

Nanofiber meshes (NFMs) loaded with therapeutic agents are very often employed to treat hard-to-heal wounds such as diabetic wounds. However, most of the NFMs have limited capability to load multiple or hydrophilicity distinctive-therapeutic agents. The therapy strategy is therefore significantly hampered. To tackle the innate drawback associated with the drug loading versatility, a chitosan-based nanocapsule-in-nanofiber (NC-in-NF) structural NFM system is developed for simultaneous loading of hydrophobic and hydrophilic drugs. Oleic acid-modified chitosan is first converted into NCs by the developed mini-emulsion interfacial cross-linking procedure, followed by loading a hydrophobic anti-inflammatory agent Curcumin (Cur) into the NCs. Sequentially, the Cur-loaded NCs are successfully introduced into reductant-responsive maleoyl functional chitosan/polyvinyl alcohol NFMs containing a hydrophilic antibiotic Tetracycline hydrochloride. Having a co-loading capability for hydrophilicity distinctive agents, biocompatibility, and a controlled release property, the resulting NFMs have demonstrated the efficacy on promoting wound healing either in normal or diabetic rats.

8.
Biomimetics (Basel) ; 8(2)2023 May 25.
Article in English | MEDLINE | ID: mdl-37366817

ABSTRACT

The unmanned aerial vehicle (UAV) swarm is regarded as having a significant role in modern warfare. The demand for UAV swarms with the capability of attack-defense confrontation is urgent. The existing decision-making methods of UAV swarm confrontation, such as multi-agent reinforcement learning (MARL), suffer from an exponential increase in training time as the size of the swarm increases. Inspired by group hunting behavior in nature, this paper presents a new bio-inspired decision-making method for UAV swarms for attack-defense confrontation via MARL. Firstly, a UAV swarm decision-making framework for confrontation based on grouping mechanisms is established. Secondly, a bio-inspired action space is designed, and a dense reward is added to the reward function to accelerate the convergence speed of training. Finally, numerical experiments are conducted to evaluate the performance of our method. The experiment results show that the proposed method can be applied to a swarm of 12 UAVs, and when the maximum acceleration of the enemy UAV is within 2.5 times ours, the swarm can well intercept the enemy, and the success rate is above 91%.

10.
Cancer Med ; 12(10): 11284-11292, 2023 05.
Article in English | MEDLINE | ID: mdl-36965095

ABSTRACT

BACKGROUND: Previous studies had explored the diagnostic or prognostic value of NRP-1/CD304 in blastic plasmacytoid dendritic cell neoplasm (BPDCN), acute myeloid leukemia (AML), and B-cell acute lymphoblastic leukemia (B-ALL), whereas the expression and application value of NRP-1/CD304 in other common hematological diseases have not been reported. METHODS: Bone marrow samples from 297 newly diagnosed patients with various hematological diseases were collected to detect the expression of NRP-1/CD304 by flow cytometry (FCM). The diagnostic efficacy of NRP-1/ CD304-positive diseases was analyzed by receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) was compared. RESULTS: In the research cohort, the total positive rate of NRP-1/CD304 was 14.81% (44/297), mainly distributed in BPDCN (100%, 6/6), B-ALL (48.61%, 35/72), and AML (4.48%, 3/67), with statistically significant differences (p < 0.01). Other diseases, such as T-cell acute lymphoblastic leukemia (T-ALL), B-cell non-Hodgkin lymphoma (B-NHL), T/NK-cell lymphoma and plasma cell neoplasms, did not express NRP-1/CD304. The AUC of NRP-1/CD304 was 0.936 (95% CI 0.898-0.973), 0.723 (95% CI 0.646-0.801), and 0.435 (95% CI 0.435) in BPDCN, B-ALL and AML, respectively. Besides, CD304 was commonly expressed in B-ALL with BCR-ABL1 gene rearrangement (p = 0.000), and CD304 expression was positively correlated with CD34 co-expression (p = 0.009) and CD10 co-expression (p = 0.007). CONCLUSIONS: NRP-1/CD304 is only expressed in BPDCN, B-ALL and AML, but not in other common hematological diseases. This indicates that NRP-1/CD304 has no obvious diagnostic and follow-up study value in hematological diseases other than BPDCN, B-ALL, and AML.


Subject(s)
Hematologic Diseases , Leukemia, Myeloid, Acute , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Follow-Up Studies , Leukemia, Myeloid, Acute/diagnosis , Prognosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Acute Disease
11.
Food Res Int ; 162(Pt A): 112018, 2022 12.
Article in English | MEDLINE | ID: mdl-36461242

ABSTRACT

The myrosinase-glucosinolate system, physicochemical properties, and bacterial community were profiled during fermentation of high hydrostatic pressure (HHP) pretreated brine-pickled radishes; traditionally brine-pickled radishes were utilised as the control. Scanning electron microscopy (SEM) analysis revealed that 300 MPa pretreatment promoted brine infiltration in radish cells and damaged cellular microstructures, which activated the myrosinase-glucosinolate system. The conversion of glucosinolate (GLs) to isothiocyanates (ITC) increased and significantly enhanced the raphasatin and sulforaphene contents of pickled radish. However, 600 MPa pretreatment suppressed myrosinase activity. HHP pretreatment altered the natural radish bacterial communities by reducing the total bacterial and lactic acid bacteria counts. Lactobacillus spp. became the dominant bacterial genus within 15 d of fermentation. However, the destruction of cellular structures by HHP pretreatment also significantly decreased hardness and caused the dissolution of amino acids and TTA into brine. This caused reduced amino acid and TTA contents compared to the control group, as well as decreases in pH. HHP pretreatment suppressed the growth of spoilage bacteria (e.g. Pseudomonas, Staphylococcus, and Shewanella genera). This study provides new insight into the potential applications of HHP treatment in pickling, as it demonstrates that HHP can increase the ITC conversion rate of pickled radish, modify its physiochemical characteristics, and decrease microbial risk. Therefore, HHP is a promising preprocessing technique to be used for pickle manufacturing industry.


Subject(s)
Glucosinolates , Raphanus , Fermentation , Bacteria
12.
J Exp Clin Cancer Res ; 41(1): 220, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831908

ABSTRACT

BACKGROUND: The mechanism by which glioblastoma evades temozolomide (TMZ)-induced cytotoxicity is largely unknown. We hypothesized that mitochondria plays a role in this process. METHODS: RNA transcriptomes were obtained from tumor samples and online databases. Expression of different proteins was manipulated using RNA interference or gene amplification. Autophagic activity and mitochondrial metabolism was assessed in vitro using the respective cellular and molecular assays. In vivo analysis were also carried out in this study. RESULTS: High SH3GLB1 gene expression was found to be associated with higher disease grading and worse survival profiles. Single-cell transcriptome analysis of clinical samples suggested that SH3GLB1 and the altered gene levels of oxidative phosphorylation (OXPHOS) were related to subsets expressing a tumor-initiating cell signature. The SH3GLB1 protein was regulated by promoter binding with Sp1, a factor associated with TMZ resistance. Downregulation of SH3GLB1 resulted in retention of TMZ susceptibility, upregulated p62, and reduced LC3B-II. Autophagy inhibition by SH3GLB1 deficiency and chloroquine resulted in attenuated OXPHOS expression. Inhibition of SH3GLB1 in resistant cells resulted in alleviation of TMZ-enhanced mitochondrial metabolic function, such as mitochondrial membrane potential, mitochondrial respiration, and ATP production. SH3GLB1 modulation could determine tumor susceptibility to TMZ. Finally, in animal models, resistant tumor cells with SH3GLB1 knockdown became resensitized to the anti-tumor effect of TMZ, including the suppression of TMZ-induced autophagy and OXPHOS. CONCLUSIONS: SH3GLB1 promotes TMZ resistance via autophagy to alter mitochondrial function. Characterizing SH3GLB1 in glioblastoma may help develop new therapeutic strategies against this disease in the future.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Autophagy , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Mitochondria , Temozolomide/pharmacology , Temozolomide/therapeutic use
13.
Macromol Biosci ; 22(10): e2200178, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35902381

ABSTRACT

Utilizing CO2 as one of the monomer resources, poly(vinylcyclohexene carbonates) (PVCHCs) are used as the precursor for preparing cationic PVCHCs (CPVCHCs) via thiol-ene click functionalization. Through the functionalization, CPVCHC-43 with a tertiary amine density of 43% relative to the backbone is able to display a significantly antibacterial ability against Staphylococcus aureus (S. aureus). Blending CPVCHC-43 with polyacrylonitrile (PAN), CPVCHC/PAN nanofiber meshes (NFMs) have been successfully prepared by electrospinning. More importantly, two crucial fibrous structural factors including CPVCHC/PAN weight ratio and fiber diameter have been systematically investigated for the effects on the antibacterial performance of the NFMs. Sequentially, a quaternization treatment has been employed on the NFMs with an optimal fibrous structure to enhance the antibacterial ability. The resulting quaternized NFMs have demonstrated the great biocidal effects against Gram-positive and Gram-negative bacteria. Moreover, the excellent biocompatibility of the quaternized NFMs have also been thoroughly evaluated and verified.


Subject(s)
Nanofibers , Acrylic Resins , Amines , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbon Dioxide , Carbonates , Gram-Negative Bacteria , Gram-Positive Bacteria , Nanofibers/chemistry , Polycarboxylate Cement , Staphylococcus aureus , Sulfhydryl Compounds
14.
Int J Biol Sci ; 18(1): 331-348, 2022.
Article in English | MEDLINE | ID: mdl-34975336

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by muscularized pulmonary blood vessels, leading to right heart hypertrophy and cardiac failure. However, state-of-the-art therapeutics fail to target the ongoing remodeling process. Here, this study shows that matrix metalloproteinases (MMP)-1 and MMP-10 levels are increased in the medial layer of vessel wall, serum, and M1-polarized macrophages from patients with PAH and the lungs of monocrotaline- and hypoxia-induced PAH rodent models. MMP-10 regulates the malignant phenotype of pulmonary artery smooth muscle cells (PASMCs). The overexpression of active MMP-10 promotes PASMC proliferation and migration via upregulation of cyclin D1 and proliferating cell nuclear antigen, suggesting that MMP-10 produced by infiltrating macrophages contributes to vascular remodeling. Furthermore, inhibition of STAT1 inhibits hypoxia-induced MMP-10 but not MMP-1 expression in M1-polarized macrophages from patients with PAH. In conclusion, circulating MMP-10 could be used as a potential targeted therapy for PAH.


Subject(s)
Macrophages/metabolism , Matrix Metalloproteinase 10/metabolism , Matrix Metalloproteinase 1/metabolism , Pulmonary Arterial Hypertension/metabolism , Vascular Remodeling , Adult , Aged , Animals , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Rats , Up-Regulation
15.
J Cell Physiol ; 237(2): 1299-1314, 2022 02.
Article in English | MEDLINE | ID: mdl-34612516

ABSTRACT

The lung is the first and most frequent organ to fail among sepsis patients. The mortality rate of sepsis-related acute lung injury (ALI) is high. Despite appropriate antimicrobial therapy, no treatment strategies are available for sepsis-induced ALI. Stem cell-mediated paracrine signaling is a potential treatment method for various diseases. This study aimed to examine the effects of induced pluripotent stem cell-derived conditioned medium (iPSC-CM) combined with antibiotics on ALI in a rat model of Escherichia coli-induced sepsis. Rats were administered either iPSC-CM or the vehicle (saline) with antibiotics (ceftriaxone). After 72 h, liquid biopsy, bronchoalveolar lavage fluid (BALF), and tissues were harvested for analysis. Survival rates were observed for up to 3 days. Furthermore, we examined the effects of iPSC-CM on cytokine production, metalloproteinase 9 (MMP-9) expression, and NLRP3-ASC interaction in RAW264.7 cells stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ). Combined treatment of iPSC-CM with antibiotics significantly improved survival in E. coli-infected rats (p = 0.0006). iPSC-CM ameliorated E. coli-induced infiltration of macrophages, reducing the number of cells in BALF, and suppressing interleukin (IL)-1ß, MIP-2, IL-6, and MMP-9 messenger RNA in lung sections. iPSC-CM treatment attenuated NLRP3 expression and inhibited NLRP3 inflammasome activation by disrupting NLRP3-mediated ASC complex formation in LPS/IFN-γ-primed RAW264.7 cells. This study reveals the mechanisms underlying iPSC-CM-conferred anti-inflammatory activity in ALI through the attenuation of macrophage recruitment to the lung, thus inactivating NLRP3 inflammasomes in macrophages. iPSC-CM therapy may be a useful adjuvant treatment to reduce sepsis-related mortality by ameliorating ALI.


Subject(s)
Acute Lung Injury , Induced Pluripotent Stem Cells , Sepsis , Acute Lung Injury/chemically induced , Animals , Anti-Bacterial Agents/adverse effects , Ceftriaxone/adverse effects , Culture Media, Conditioned/pharmacology , Escherichia coli/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Matrix Metalloproteinase 9 , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Sepsis/drug therapy
16.
Tissue Cell ; 74: 101699, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891081

ABSTRACT

Patients with end-stage renal disease often need dialysis to maintain their lives because of donor organ shortage. The creation of a transplantable graft to permanently replace kidney function would overcome the organ shortage problem and the morbidity associated with immunosuppression. In the present study, we decellularized rat kidneys by the perfusion of detergent, yielding acellular scaffolds with the vascular, uretic, as well as cortical and medullary architecture. To regenerate the functional organ, we seeded tubular epithelial cells and mouse kidney progenitor cells from the ureter together with endothelial cells and mouse kidney progenitor cells from the renal artery. The renal constructs from seeded cells were cultured in a whole-organ bioreactor. After 3 months of organ culture, the seeded cells formed renal tubules, grew in the glomeruli, and some mouse kidney progenitor cells were also scattered in the interstitium. We tested the function of the bioengineered kidney with standardized perfusate in vitro. The bioengineered kidney not only produced urine but also reabsorbed albumin, glucose, and calcium. We conclude that seeded cell-based bioengineering of kidneys with physiological secreting and reabsorbing properties is possible and holds therapeutic promise.


Subject(s)
Bioreactors , Kidney/chemistry , Kidney/metabolism , Stem Cells/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Kidney/cytology , Mice , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Stem Cells/cytology
17.
Glob Heart ; 16(1): 70, 2021.
Article in English | MEDLINE | ID: mdl-34900561

ABSTRACT

Background: The etiology of pulmonary arterial hypertension (PAH) in the Han Chinese population is poorly understood. Objectives: The aim of this study was to assess gene variants and associated functional annotations for PAH in Han Chinese patients. Methods: This is an ethnicity-based multi-centre study. Blood samples were collected from 20 PAH patients who volunteered for the study, and genetic tests were performed. The DAVID database was used to functionally annotate the genes BMPR2, ALK1, KCNK3, CAV1, and ENG. Associated diseases, functional categories, gene ontology, and protein interactions were analysed using the Functional Annotation Tool in the DAVID database. GEO and ClinVar databases were also used for further comparison with gene mutations in our study. Results: PAH patient with gene mutations were female predominant except for a single male with a BMPR2 mutation. Locus variants in our study included 'G410DfsX1' in BMPR2, 'ex7 L300P,' 'ex4 S110PfsX40,' and 'ex7 E295Afs96X' in ALK1, 'c.-2C>A (IVS1-2 C>A)' in CAV1, and 'ex8 D366Q' in ENG were not found in the ClinVar database associated with PAH. In addition to BMP and TGF-ß pathways, gene ontology of input genes in the DAVID database also included pathways associated with nitric oxide signaling and regulation. Conclusions: This Multi-centre study indicated that 'G410DfsX1' in BMPR2, 'ex7 L300P,' 'ex4 S110PfsX40,' 'ex7 E295Afs96X' in ALK1, 'c.-2C>A (IVS1-2 C>A)' in CAV1, and 'ex8 D366Q' in ENG were identified in Han Chinese patients with PAH. Females were more susceptible to PAH, and a relatively young age distribution was observed for patients with BMPR2 mutations.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , China/epidemiology , Female , Genetic Predisposition to Disease , Humans , Hypertension, Pulmonary/genetics , Male , Mutation , Pedigree
18.
Healthcare (Basel) ; 9(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946445

ABSTRACT

Through this study, we aimed to determine the association of regular leisure-time physical activity (LTPA) with self-reported body mass index (BMI) and obesity risk among middle-aged and older adults in Taiwan. We conducted a cross-sectional study and reviewed the data derived from the Taiwan National Physical Activity Survey (TNPAS). Responses from 12,687 participants aged 45-108 years from the database were collected in this study. All the participants completed a standardized structured questionnaire that solicitated information regarding their demographic characteristics (age, gender, education, occupation, and self-reported health status), physical activity behaviors (regular/nonregular LTPA), and self-reported anthropometrics (height, weight, and BMI). Multiple linear and logistic regressions were used to examine the association between regular LTPA and BMI, and between regular LTPA and obesity status, respectively. Regular LTPA was associated with male gender, normal weight, excellent or good self-reported health status, and a lower rate of being underweight compared with nonregular LTPA. Regular LTPA was significant negatively associated with being underweight (OR = 0.71, p < 0.05), whereas it had no significant relationship with BMI and obesity (p > 0.05). Regular LTPA was associated with a reduced risk of being underweight among middle-aged and elderly adults in Taiwan. Further research on the relevant mechanism underlying this phenomenon is warranted.

19.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681918

ABSTRACT

The phosphoinositide-3-kinase (PI3K) pathway has widely been considered as a potential therapeutic target for head and neck cancer (HNC); however, the application of PI3K inhibitors is often overshadowed by the induction of drug resistance with unknown mechanisms. In this study, PII3K inhibitor resistant cancer cells were developed by prolonged culturing of cell lines with BEZ235, a dual PI3K and mammalian target of rapamycin (mTOR) inhibitor. The drug resistant HNC cells showed higher IC50 of the proliferation to inhibitors specifically targeting PI3K and/or mTOR, as compared to their parental cells. These cells also showed profound resistance to drugs of other classes. Molecular analysis revealed persistent activation of phosphorylated AKT at threonine 308 in the drug resistant cells and increased expression of markers for tumor-initiating cells. Interestingly, increased intra-cellular ROS levels were observed in the drug resistant cells. Among anti-oxidant molecules, the expression of SOD2 was increased and was associated with the ALDH-positive tumor-initiating cell features. Co-incubation of SOD inhibitors and BEZ235 decreased the stemness feature of the cells in vitro, as shown by results of the spheroid formation assay. In conclusion, dysregulation of SOD2 might contribute to the profound resistance to PI3K inhibitors and the other drugs in HNC cells.


Subject(s)
Drug Resistance, Neoplasm , Head and Neck Neoplasms/metabolism , Imidazoles/pharmacology , Neoplastic Stem Cells/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , Superoxide Dismutase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Multiple , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/drug therapy , Humans , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Up-Regulation
20.
Front Oncol ; 11: 671127, 2021.
Article in English | MEDLINE | ID: mdl-34307141

ABSTRACT

Immune checkpoint inhibitors (ICIs) have been approved to treat patients with various cancer types, including lung cancer, in many countries. This study aims to investigate the effectiveness and safety of ICIs under different treatment conditions of non-small cell lung cancer patients. A population-based retrospective cohort study was conducted using the electronic health records of three medical centers in Taiwan. From January 01, 2016, to November 30, 2018, a total of 91 ICIs and 300 traditional chemotherapy users who had undergone stage III and IV lung cancer treatment were included in the study. We performed the randomized matched pair design by selecting a Chemotherapy subject for each ICI patient in the sample population. All subjects were monitored from the date of taking ICIs or chemotherapy drugs until the event of death, loss to follow-up, or were occurred with any defined adverse events. Kaplan-Meier estimators and cox proportional hazard regression models were used to compute the overall survival, efficacy, and safety of the ICIs group. The median overall survival (OS) in the ICI and Chemo groups after matching was 11.2 months and 10.5 months, respectively. However, the results showed no significant OS differences between ICIs and chemo groups for both before and after matching (HR,1.30; 95%CI, 0.68-2.46; p=0.428 before matching and HR,0.96; 95CI%, 0.64-1.44; p=0.838 after matching). We observed that with the higher amount of PD-L1, the length of the patients' overall survival was (positive vs. negative PD-L1, HR,0.21; 95%CI, 0.05-0.80; p=0.022). The incidences of serious adverse drug events above grade 3 in the ICIs and traditional chemo groups were 12.7% and 21.5%, respectively. We also found that the number of AEs was less in ICIs than in the Chemo group, and the AEs that occurred after treatments were observed earlier in the ICIs compared to the Chemo group. ICIs drugs were observed to be safer than traditional chemotherapy as they had a lower risk of serious adverse drug events. It is necessary to pay attention to immune-related side effects and provide appropriate treatment. Furthermore, the patient's physical status and PD-L1 test can be used to evaluate the clinical effectiveness of ICIs.

SELECTION OF CITATIONS
SEARCH DETAIL
...