Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(24): 31636-31647, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38848140

ABSTRACT

Rigid thermal protection materials such as ultra-high-temperature ceramics are desirable for applications in aerospace vehicles, but few materials can currently satisfy the emerging high-temperature sealing requirements for dynamic gaps created by the mismatch of the thermal expansion of different protection layers. Here, we design and fabricate a flexible biomimetic anisotropic deformation composite by multilayer cocuring onto fiber fabrics. It displays superior anisotropic deformation, whose longitudinal expansion ratio is 48 times greater than the transverse expansion ratio at specific temperatures. Furthermore, the ordered carbon structure created by transition-metal-catalyzed graphitization and the C/Si synergistic effect resulting from the combination of biomimetic fiber fabrics and SR enable the in situ formation of a high-temperature-resistant SiC crystalline phase within the char layer, ultimately resulting in exceptional thermal protection properties. By constructing hollow structures in situ, the back temperature of the composite, which is only 4.33 mm thick, is stabilized at 140 °C under the condition of continuous butane flame ablation (1300 °C) for 420 s. Multilayer structure and flexible features can facilitate large-scale preparation and arbitrary cutting and bending, adapted to different thermal protection areas.

2.
Nat Commun ; 15(1): 145, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168080

ABSTRACT

The Hippo pathway controls developmental, homeostatic and regenerative tissue growth, and is frequently dysregulated in various diseases. Although this pathway can be activated by innate immune/inflammatory stimuli, the underlying mechanism is not fully understood. Here, we identify a conserved signaling cascade that leads to Hippo pathway activation by innate immune/inflammatory signals. We show that Tak1, a key kinase in innate immune/inflammatory signaling, activates the Hippo pathway by inducing the lysosomal degradation of Cka, an essential subunit of the STRIPAK PP2A complex that suppresses Hippo signaling. Suppression of STRIPAK results in the activation of Hippo pathway through Tao-Hpo signaling. We further show that Tak1-mediated Hippo signaling is involved in processes ranging from cell death to phagocytosis and innate immune memory. Our findings thus reveal a molecular connection between innate immune/inflammatory signaling and the evolutionally conserved Hippo pathway, thus contributing to our understanding of infectious, inflammatory and malignant diseases.


Subject(s)
Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Immunity, Innate
3.
Biodivers Data J ; 11: e103289, 2023.
Article in English | MEDLINE | ID: mdl-37234078

ABSTRACT

Background: Qinghai-Tibetan Plateau is a global biodiversity hotspot due to the unique geographical environment. However, there are few reports on the list of national key protected plants and the distribution pattern of their diversity in this area. Based on the flora and online database, this paper summarised the species diversity and distribution patterns of national key protected wild plants on the Qinghai-Tibet Plateau. New information: The results showed that there were 350 species of national key protected wild plants on the Qinghai-Tibetan Plateau, belonging to 72 families and 130 genera. Amongst them, 22 species were under class I protection, 328 species were under class II protection and 168 species were endemic to China. Its endangered status involves EW 1 species, CR 17 species, EN 90 species, VU 90 species, NT 30 species, LC 60 species and DD 62 species. Species diversity declined gradually from the southeast to the northwest with hotspots located within Sanjiang Valley subregion (ⅢE14a). The list of national key protected wild plants and their diversity and distribution patterns in the Qinghai-Tibetan Plateau can provide basic data for the conservation of regional biodiversity and the formulation of conservation strategies.

4.
Genome ; 66(11): 281-294, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37159948

ABSTRACT

The phylogeny of the species from Phrymaceae and Mazaceae has undergone many adjustments and changes in recent years. Moreover, there is little plastome information on the Phrymaceae. In this study, we compared the plastomes of six species from the Phrymaceae and 10 species from the Mazaceae. The gene order, contents, and orientation of the 16 plastomes were found to be highly similar. A total of 13 highly variable regions were identified among the 16 species. An accelerated rate of substitution was found in the protein-coding genes, particularly cemA and matK. The combination of effective number of codons, parity rule 2, and neutrality plots revealed that the codon usage bias is affected by mutation and selection. The phylogenetic analysis strongly supported {Mazaceae [(Phrymaceae + Wightiaceae) + (Paulowniaceae + Orobanchaceae)]} relationships in the Lamiales. Our findings can provide useful information to analyze the phylogeny and molecular evolution within the Phrymaceae and Mazaceae.


Subject(s)
Lamiales , Magnoliopsida , Phylogeny , Codon Usage , Lamiales/genetics , Magnoliopsida/genetics , Codon , Evolution, Molecular
5.
Int. microbiol ; 26(2): 231-242, May. 2023. graf, ilus
Article in English | IBECS | ID: ibc-220218

ABSTRACT

Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4+ and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.(AU)


Subject(s)
Humans , Fungi , Bacteria/classification , Soil Characteristics , High-Throughput Nucleotide Sequencing , Microbial Interactions , Mycorrhizae , China , Soil
6.
ACS Appl Mater Interfaces ; 15(12): 15986-15997, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36930790

ABSTRACT

Based on the strategy of killing two birds with one stone, we introduce thermally expandable microspheres into a silicone rubber matrix to fabricate temperature-responsive controllable deformation materials, which exhibit intelligent deformation properties as well as enhanced thermal protection performance, for dynamic thermal protection in the next-generation morphing aircrafts. The formation of hollow structures endows the material with intelligent thermal management ability and makes the thermal conductivity controllable, meeting the requirements of rapid deformation and excellent thermal insulation. The dimensions of the material adaptively expand with increasing temperature, and a constant 50N force can be provided to ensure reliable sealing. Moreover, benefiting from the synergistic effect of the hollow structure and zinc borate in the ceramization process of the silicone rubber, the 10 mm thick material can reduce the temperature from 2000 to 63 °C, and the mass ablation rate is only 4.8 mg/s. To broaden the application of our material, a sensor with a sandwich structure composed of different functional layers is designed. It is pleasantly surprising to observe that the sensor can provide real-time remote warning of fire and overheating sites with a response time as short as 1 s. This synergistic strategy opens a new possibility to fabricate intelligent thermal protection materials.

7.
Sci Total Environ ; 864: 161116, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36566852

ABSTRACT

In this study, the hydration mechanism and environmental impacts of blended cements with the co-combustion ash of rice husk and sewage sludge (CCA) were investigated and compared to those of blended cements with sewage sludge ash (SSA). CCA possesses lower phosphate contents than SSA, leading to lower inhibition effects on early hydration of cement clinker. Moreover, the pozzolanic activity of CCA is higher than that of SSA. Thus, more hydration products from the pozzolanic reaction of CCA are generated in CCA-based blended cements. Compared to the matrix of SSA-based blended cements, that of their CCA-based counterpart is filled with more hydration products, which promotes porosity refinement and strength development of CCA-based blended cements at later ages. CCA-based blended cements exhibit greater environmental benefits than SSA-based blended cements because fossil consumption and toxic substance emissions during the co-combustion of rice husk and sewage sludge is lower than that during the mono-combustion of sewage sludge.


Subject(s)
Oryza , Sewage , Environment , Coal Ash
8.
J Environ Manage ; 326(Pt A): 116690, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372035

ABSTRACT

In this research, an economical and eco-friendly ultra-high performance concrete (UHPC) with compressive strength of more than 120 MPa was prepared with the dosage of sewage sludge ash (SSA) at 8 wt%. The results indicate that the addition of SSA has an adverse influence on the workability of UHPC samples due to its special morphology. Furthermore, the microstructure and phase assemblage of SSA-based UHPC were determined and the results show that SSA inhibits the early hydration of cement clinker, while promotes the precipitation of additional hydration products at later curing ages due to its pozzolanic reaction. The pore structure analysis of SSA-based UHPC determined by mercury intrusion porosimetry indicates that the addition of SSA increases the cumulative pore volume, while decreases the large pore volume of UHPC. Economic and environmental analysis indicates that using SSA-based UHPC greatly reduces the unit cost and the impacts on the environment.


Subject(s)
Construction Materials , Sewage , Sewage/chemistry , Construction Materials/analysis , Compressive Strength
9.
Int Microbiol ; 26(2): 231-242, 2023 May.
Article in English | MEDLINE | ID: mdl-36352292

ABSTRACT

Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4+ and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.


Subject(s)
Agaricales , Microbiota , Tibet , Soil , Agaricales/genetics , Bacteria/genetics , Soil Microbiology
10.
Foods ; 11(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36230101

ABSTRACT

The present study extracted total saponins from quinoa husks with pressurized hot water extraction and optimized the extraction conditions. The response surface methodology (RSM) with a Box-Behnken design (BBD) was employed to investigate the effects of extraction flow rate, extraction temperature and extraction time on the extraction yield of total saponins. A maximal yield of 23.06 mg/g was obtained at conditions of 2 mL/min, 210 °C and 50 min. The constituents of the extracts were analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of twenty-three compounds were identified, including five flavonoids, seventeen triterpenoid saponins and a phenolic acid. Moreover, we performed an in vitro assay for the α-glucosidase activity and found a stronger inhibitory effect of the quinoa husk extracts than acarbose, suggesting its potential to be developed into functional products with hypoglycemic effect. Finally, our molecular docking analyses indicated triterpenoid saponins as the main bioactive components.

11.
Cell Rep ; 40(4): 111143, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35905720

ABSTRACT

Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Antiviral Agents , Drosophila/metabolism , Drosophila Proteins/metabolism , Humans , Immunity, Innate , Janus Kinases/metabolism , MAP Kinase Kinase Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
12.
BMC Plant Biol ; 22(1): 195, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413790

ABSTRACT

BACKGROUND: The genus Swertia is of great medicinal importance and one of the most taxonomically challenging taxa within Gentianaceae, largely due to the morphological similarities of species within this genus and with its closely related genera. Previous molecular studies confirmed its polyphyly but suffered from low phylogenetic resolutions because only limited sequence loci were used. Thus, we conducted the structural, gene evolutionary, and phylogenetic analyses of 11 newly obtained plastomes of Swertia. Our result greatly improved the phylogenetic resolutions in Swertia, shed new light on the plastome evolution and phylogenetic relationships of this genus. RESULTS: The 11 Swertia plastomes together with the published seven species proved highly similar in overall size, structure, gene order, and content, but revealed some structural variations caused by the expansion and contraction of the IRb region into the LSC region, due to the heterogeneous length of the ψycf1. The gene rps16 was found to be in a state flux with pseudogenes or completely lost. Similar situation was also documented in other genera of Gentianaceae. This might imply loss of the gene in the common ancestor of Gentianaceae. The distribution plot of ENC vs. GC3 showed all these plastomes arranging very close in the Wright line with an expected ENC value (49-52%), suggesting the codon usage of Swertia was mainly constrained by a GC mutation bias. Most of the genes remained under the purifying selection, however, the cemA was identified under positive selection, possibly reflecting an adaptive response to low CO2 atmospheric conditions during the Late Miocene. Our phylogenomic analyses, based on 74 protein-coding genes (CDS), supported the polyphyly of Swertia with its close allies in the subtribe Swertiinae, presumably due to recent rapid radiation. The topology inferred from our phylogenetic analyses partly supported the current taxonomic treatment. Finally, several highly variable loci were identified, which can be used in future phylogenetic studies and accurate identification of medicinal genuineness of Swertia. CONCLUSIONS: Our study confirmed the polyphyly of Swertia and demonstrated the power of plastome phylogenomics in improvement of phylogenetic resolution, thus contributing to a better understanding of the evolutionary history of Swertia.


Subject(s)
Genome, Plastid , Gentianaceae , Swertia , Evolution, Molecular , Gentianaceae/genetics , Phylogeny , Plastids/genetics , Tibet
13.
Front Plant Sci ; 13: 855944, 2022.
Article in English | MEDLINE | ID: mdl-35371115

ABSTRACT

Parnassia L., a perennial herbaceous genus in the family Celastraceae, consists of about 60 species and is mainly distributed in the Pan-Himalayan and surrounding mountainous regions. The taxonomic position and phylogenetic relationships of the genus are still controversial. Herein, we reassessed the taxonomic status of Parnassia and its intra- and inter-generic phylogeny within Celastraceae. To that end, we sequenced and assembled the whole plastid genomes and nuclear ribosomal DNA (nrDNA) of 48 species (74 individuals), including 25 species of Parnassia and 23 species from other genera of Celastraceae. We integrated high throughput sequence data with advanced statistical toolkits and performed the analyses. Our results supported the Angiosperm Phylogeny Group IV (APG IV) taxonomy which kept the genus to the family Celastraceae. Although there were topological conflicts between plastid and nrDNA phylogenetic trees, Parnassia was fully supported as a monophyletic group in all cases. We presented a first attempt to estimate the divergence of Parnassia, and molecular clock analysis indicated that the diversification occurred during the Eocene. The molecular phylogenetic results confirmed numerous taxonomic revisions, revealing that the morphological characters used in Parnassia taxonomy and systematics might have evolved multiple times. In addition, we speculated that hybridization/introgression might exist during genus evolution, which needs to be further studied. Similarly, more in-depth studies will clarify the diversification of characters and species evolution models of this genus.

14.
Plants (Basel) ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34834747

ABSTRACT

Gentianaceae is a large plant family and is distributed worldwide. As the largest tribe in Gentianaceae, Gentianeae contains 939-968 species, and the Qinghai-Tibet Plateau and adjacent areas are the main centers of diversity for Gentianeae. Species from the Gentianeae are widely used in traditional Tibetan medicine. In this review, a systematic and constructive overview of the information on botany, ethnomedicinal usage, phytochemistry, and pharmacological properties of Gentianeae in Tibetan medicine is provided. The results of this study are based on a literature search, including electronic databases, books, websites, papers, and conference proceedings. Botanical studies showed that Gentianeae includes the subtribe Gentianeae and Swertiinae, and several new genera and taxa have been identified. Approximately 83 species from Gentianeae were used in Tibetan medicine, among which Gentiana and Swertia constituted the largest number of species with 42 and 24 species, respectively. The species from Gentianeae are mainly used as Bangjian (སྤང་རྒྱན།), Jieji (ཀྱི་ལྕེ།), Dida (ཏིག་ཏ།), and Ganggaqiong (གང་གྰཆུང་།) in Tibetan medicine with different clinical applications. More than 240 formulas were found containing Gentianeae species with different attending functions. Phytochemical studies showed that the main active components of Gentianeae species are iridoids, xanthones, flavonoids, and triterpenoids. The bioactivities of plants from Gentianeae include hepatic protection, upper respiratory tract protection, joint and bone protection, glucose regulation, antibacterial, antioxidant, anticancer, and antiviral effects. This review will provide a reference for future research on natural resource protection, plant-based drug development, and further clinical investigation.

15.
Ecol Evol ; 11(22): 16034-16046, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824809

ABSTRACT

Genus Comastoma (subt. Swertiinae, Gentianaceae) contains species, such as "Zangyinchen," that are important herbs in Tibetan medicine. The phylogenetic relationship of this within Gentianaceae and the circumscriptions of its species have long been controversial with conflicting morphological and molecular data reported. Here, we used whole chloroplast genome sequences for Comastoma species and related taxa to reconstruct their phylogeny and clarify their taxonomic relationships. The results revealed that the length of all plastome sequenced varied from 149 to 151 kb and have high similarity in structure and gene content. Phylogenomic analysis showed that Comastoma is a monophyletic group, closely related to the genus Lomatogonium. The divergence time estimation showed that Gentianaceae diverged at about 21.81 Ma, while the split of Comastoma occurred at 7.70 Ma. However, the results suggested the crown age of species formation in this genus is after 4.19 Ma. Our results suggest that QTP uplift, the alternation of Quaternary glaciation and interglaciation, and monsoon changes might have acted as drivers of speciation in Comastoma.

16.
Plants (Basel) ; 9(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218207

ABSTRACT

Biebersteiniaceae and Nitrariaceae, two small families, were classified in Sapindales recently. Taxonomic and phylogenetic relationships within Sapindales are still poorly resolved and controversial. In current study, we compared the chloroplast genomes of five species (Biebersteinia heterostemon, Peganum harmala, Nitraria roborowskii, Nitraria sibirica, and Nitraria tangutorum) from Biebersteiniaceae and Nitrariaceae. High similarity was detected in the gene order, content and orientation of the five chloroplast genomes; 13 highly variable regions were identified among the five species. An accelerated substitution rate was found in the protein-coding genes, especially clpP. The effective number of codons (ENC), parity rule 2 (PR2), and neutrality plots together revealed that the codon usage bias is affected by mutation and selection. The phylogenetic analysis strongly supported (Nitrariaceae (Biebersteiniaceae + The Rest)) relationships in Sapindales. Our findings can provide useful information for analyzing phylogeny and molecular evolution within Biebersteiniaceae and Nitrariaceae.

17.
Genes (Basel) ; 10(2)2019 01 29.
Article in English | MEDLINE | ID: mdl-30700037

ABSTRACT

The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes. Furthermore, the observed heterozygosity (Ho), the expected heterozygosity (He), and the Shannon information index (I) were 0.5277, 0.4949, and 0.9394, respectively, which indicated a high level of genetic diversity. We detected high genetic differentiation among all sampling sites and restricted gene flow among populations. Bayesian-based cluster analysis (STRUCTURE), principal coordinates analysis (PCoA), and Neighbor-Joining (NJ) cluster analysis based on microsatellite markers grouped the populations into two clusters: the southern branch and the northern branch. The analysis also detected genetic barriers and restricted gene flow between the two groups separated by the Tanggula Mountains. This study indicates that the geographical isolation of the Tanggula Mountains restricted the genetic connection and the distinct niches on the two sides of the mountains increased the intraspecific divergence of the plants.


Subject(s)
Asteraceae/genetics , Genetic Speciation , Polymorphism, Genetic , Ecosystem , Gene Flow , Microsatellite Repeats , Reproductive Isolation
18.
Mitochondrial DNA B Resour ; 4(2): 2637-2638, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-33365660

ABSTRACT

Myricaria prostrata is a critically endangered plant mainly distributed in Qinghai-Tibetan Plateau and adjacent areas. In the current research, we report the complete chloroplast genome sequence of M. prostrata. The total length of the genome was 155,230 bp with the GC content of 36.39%. 129 genes including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes were annotated. Maximum-likelihood (ML) analysis revealed that Myricaria forms a clade with Tamarix which showed close relationship with the clade of Hololachna and Reaumuria.

19.
Molecules ; 23(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518967

ABSTRACT

The genus Lancea is native to the Qinghai-Tibetan Plateau and consists of two species, Lancea tibetica Hook. f. et Thoms. and Lancea hirsuta Bonati. Here, we report the complete sequences of the chloroplast genomes of L. tibetica and L. hirsuta, which were 153,665 and 154,045 bp in length, respectively, and each included a pair of inverted repeated regions (25,624 and 25,838 bp in length, respectively) that were separated by a large single copy region (84,401 and 84,588 bp in length, respectively) and a smaller single copy region (18,016 and 17,781 bp in length, respectively). A total of 106 genes in L. tibetica and 105 in L. hirsuta comprised 79 protein-coding genes, and 4 ribosomal RNA (rRNA) genes, as well as 23 and 22 transfer RNA (tRNA) genes in L. tibetica and L. hirsuta, respectively. The gene order, content, and orientation of the two Lancea chloroplast genomes exhibited high similarity. A large number of informative repetitive sequences, including SSRs, were observed in both genomes. Comparisons of the genomes with those of three other Lamiales species revealed 12 highly divergent regions in the intergenic spacers and in the matK, rpoA, rps19, ndhF, ccsA, ndhD, and ycf1 coding regions. A phylogenomic analysis suggested that Lancea forms a monophyletic group that is closely related to the clade composed of the families Phrymaceae, Paulowniaceae, and Rehmanniaceae.


Subject(s)
Genome, Chloroplast , Genomics , Lamiales/classification , Lamiales/genetics , Computational Biology/methods , Genetic Variation , Genomics/methods , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Open Reading Frames , Phylogeny , Repetitive Sequences, Nucleic Acid
20.
Mitochondrial DNA B Resour ; 3(2): 1187-1188, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-33474459

ABSTRACT

The taxonomic status of Parnassia has been widely discussed, which has been placed in more than five families, Parnassiaceae, Droseraceae, Saxifragaceae, and Celastraceae. Due to the lack of reliable genetic data, we sequenced and analyzed P. brevistyla chloroplast genome for future genetic study. The complete chloroplast genomes of Parnassia brevistyla was sequenced with NovaSeq 6000. The full length of P. brevistyla chloroplast genomes is 151,728 bp. A total of 114 unique genes, including 30 tRNA genes, four rRNA genes, and 80 protein-coding genes were found in the chloroplast genome. Using the whole chloroplast genome sequences alignment of 10 species from Celastraceae and Saxifragaceae, the phylogenetic relationship was built. The phylogenetic position of P. brevistyla was closely clustered with Celastraceae. The complete chloroplast genome of P. brevistyla provides utility information for further research of phylogenetic relationship and taxonomic status of Parnassia.

SELECTION OF CITATIONS
SEARCH DETAIL
...