Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 20(2): 2081, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24488370

ABSTRACT

To improve understanding of the unimolecular decomposition mechanism of 1,2,4-butanetriol trinitrate (BTTN) in the gas phase, density functional theory calculations were performed to determine various decomposition pathways at the B3LYP/6-311G** level. Two main mechanisms for the unimolecular decomposition of BTTN were found. In the first, homolysis of one of the O-NO2 bonds occurs to form •NO2 and CH2ONO2CHONO2CH2CH2O•, which subsequently decomposes to form CH3CHO + •CHO + 3NO2 + HCHO. In the second, successive HONO elimination reactions yield three HONO and OHCCH2CHONO2CH2ONO2 fragments, which subsequently decompose to form CH3CHO + 2CO + 3HONO. We also found that the first pathway has a slightly lower activation energy than the second. The results show that the pathway involving O-NO2 cleavage is slightly more energetically favorable than that involving HONO elimination.


Subject(s)
Butanols/chemistry , Quantum Theory , Thermodynamics , Gases/chemistry , Kinetics , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...