Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817109

ABSTRACT

BACKGROUND: Plant fungal diseases pose a significant threat to crop production. The extensive use of chemical pesticides has led to growing environmental safety risks and pesticide resistance of various plant pathogens. Therefore, it is an urgent task to explore novel eco-friendly fungicidal agents with high efficacy to combat fungal infection. RESULTS: In this study, we rationally designed a series of novel thymol derivatives by incorporation of the sulfonamide moiety and evaluated their biological activities against plant pathogenic fungi. The bioassay results underscored the remarkable in vitro antifungal activity of compounds 5m and 5t against Phytophthora capsici (P. capsici), with EC50 values of 8.420 and 8.414 µg/mL, respectively. Their efficacies were superior to that of widely used commercial fungicides azoxystrobin (AZO, 20.649 µg/mL) and cabendazim (CAB, 251.625 µg/mL). Furthermore, compound 5v exhibited excellent in vitro antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum), with an EC50 value of 12.829 µg/mL, significantly outperforming AZO (63.629 µg/mL). In vivo bioassays demonstrated the impactful activity of compound 5v against S. sclerotiorum, achieving over 98% curative and protective efficacies at the concentration of 200 µg/mL. Further mechanistic investigations unveiled that compound 5v induced mycelial shrinkage and collapse in S. sclerotiorum, resulting in organelle damage and the accumulation of antioxidant enzyme activity. CONCLUSION: The significant antifungal efficacy of the prepared thymol derivatives shall encourage further exploration of compound 5v as a promising candidate to develop novel fungicides for crop protection. © 2024 Society of Chemical Industry.

2.
Angew Chem Int Ed Engl ; : e202404979, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745374

ABSTRACT

The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.

3.
Org Lett ; 26(20): 4394-4399, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38742796

ABSTRACT

A carbene-catalyzed enantioselective addition of sulfinate to ketones between 2-benzoylbenzaldehyde and sulfonyl chloride is disclosed. Up to now, the carbon and heteroatom nucleophiles have effectively undergone catalytic enantioselective addition to carbonyl molecules to introduce functionalities and chirality. Sulfone, as an important class of sulfur-containing functional groups, represents highly valuable motifs in medicines and natural products. It remains undeveloped for the catalytic asymmetric addition of sulfinate to carbonyls. Herein we disclosed the first catalytic enantioselective addition of sulfinate to ketones for the synthesis of sulfones via N-heterocyclic carbene (NHC) catalysis. The sulfonyl chloride behaves both as an oxidant and as a nucleophilic substrate in this carbene-catalyzed process. Experimental studies suggested that the Breslow intermediate can be SET oxidized by sulfonyl chloride to generate the sulfonyl radical. This novel synthetic approach for the asymmetric addition of sulfinate to carbonyls can also be used to modify the commercially available functional molecules.

4.
J Agric Food Chem ; 72(20): 11360-11368, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38720533

ABSTRACT

In this study, a series of acrylamide derivatives containing trifluoromethylpyridine or piperazine fragments were rationally designed and synthesized. Subsequently, the in vitro antifungal activities of all of the synthesized compounds were evaluated. The findings revealed that compounds 6b, 6c, and 7e exhibited >80% antifungal activity against Phomopsis sp. (Ps) at the concentration of 50 µg/mL. Furthermore, the EC50 values for compounds 6b, 6c, and 7e against Ps were determined to be 4.49, 6.47, and 8.68 µg/mL, respectively, which were better than the positive control with azoxystrobin (24.83 µg/mL). At the concentration of 200 µg/mL, the protective activity of compound 6b against Ps reached 65%, which was comparable to that of azoxystrobin (60.9%). Comprehensive mechanistic studies, including morphological studies with fluorescence microscopy (FM), cytoplasmic leakage, and enzyme activity assays, indicated that compound 6b disrupts cell membrane integrity and induces the accumulation of defense enzyme activity, thereby inhibiting mycelial growth. Therefore, compound 6b serves as a valuable candidate for the development of novel fungicides for plant protection.


Subject(s)
Acrylamide , Drug Design , Fungicides, Industrial , Pyridines , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Acrylamide/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Structure-Activity Relationship , Ascomycota/drug effects , Ascomycota/growth & development , Piperazine/chemistry , Piperazine/pharmacology , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Molecular Structure , Microbial Sensitivity Tests , Plant Diseases/microbiology
5.
J Agric Food Chem ; 72(21): 11917-11927, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743609

ABSTRACT

An unprecedented study of the application of planar chiral compounds in antiviral pesticide development is reported. A class of multifunctional planar chiral ferrocene derivatives bearing α-amino phosphonate moieties was synthesized. These compounds, exhibiting superior optical purities, were subsequently subjected to antiviral evaluations against the notable plant pathogen potato virus Y (PVY). The influence of the absolute configurations of the planar chiral compounds on their antiviral bioactivities was significant. A number of these enantiomerically enriched planar chiral molecules demonstrated superior anti-PVY activities. Specifically, compound (Sp, R)-9n displayed extraordinary curative activities against PVY, with a 50% maximal effective concentration (EC50) of 216.11 µg/mL, surpassing the efficacy of ningnanmycin (NNM, 272.74 µg/mL). The protective activities of compound (Sp, R)-9n had an EC50 value of 152.78 µg/mL, which was better than that of NNM (413.22 µg/mL). The molecular docking and defense enzyme activity tests were carried out using the planar chiral molecules bearing different absolute configurations to investigate the mechanism of their antiviral activities against PVY. (Sp, R)-9n, (Sp, R)-9o, and NMM all showed stronger affinities to the PVY-CP than the (Rp, S)-9n. Investigations into the mechanisms revealed that the planar chiral configurations of the compounds played pivotal roles in the interactions between the PVY-CP molecules and could augment the activities of the defense enzymes. This study contributes substantial insights into the role of planar chirality in defending plants against viral infections.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Organophosphonates , Plant Diseases , Potyvirus , Solanum tuberosum , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Plant Diseases/virology , Organophosphonates/pharmacology , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Solanum tuberosum/virology , Solanum tuberosum/chemistry , Potyvirus/drug effects , Structure-Activity Relationship , Stereoisomerism , Molecular Structure
6.
J Agric Food Chem ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593435

ABSTRACT

In order to discover novel protoporphyrinogen oxidase (PPO) inhibitors with excellent herbicidal activity, a series of structurally novel 6-(pyridin-2-yl) benzothiazole derivatives were designed based on the scaffold hopping strategy. The in vitro experiments demonstrated that the newly synthesized compounds exhibited noteworthy inhibitory activity against Arabidopsis thaliana PPO (AtPPO), with IC50 values ranging from 0.06 to 1.36 µM. Preliminary postemergence herbicidal activity tests and crop safety studies indicated that some of our compounds exhibited excellent herbicidal activity and crop safety. For instance, compound (rac)-7as exhibited superior herbicidal activities to commercially available flumioxazin (FLU) and saflufenacil (SAF) at all the tested concentrations and showed effective herbicidal activities even at a dosage as low as 18.75 g ai/ha. Meanwhile, compound (rac)-7as showed good crop safety for wheat at a dosage as high as 150 g of ai/ha. Although the absolute configuration of compound 7as has no obvious effect on its herbicidal activity, compound (R)-7as showed a slightly higher crop safety than compound (S)-7as. Molecular simulation studies of Nicotiana tabacum PPO (NtPPO) and our candidate compounds showed that the benzothiazole moiety of compounds (R)-7as or (S)-7as formed multiple π-π stacking interactions with FAD, and the pyridine ring generated π-π stacking with Phe-392. Our finding proved that the pyridyl-benzothiazol hybrids are promising scaffolds for the development of PPO-inhibiting herbicides.

7.
Pest Manag Sci ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662600

ABSTRACT

BACKGROUND: Potato virus Y (PVY) is a prominent representative of plant viruses. It can inflict severe damage upon Solanaceae plants, leading to global dissemination and substantial economic losses. To discover new antiviral agents, a class of planar chiral thiourea molecules through the key step of N-heterocyclic carbene-catalyzed nitrile formation reaction was synthesized with excellent optical purities for antiviral evaluations against plant virus PVY. RESULTS: The absolute configurations of the planar chiral compounds exhibited obvious distinctions in the anti-PVY activities. Notability, compound (S)-4u exhibited remarkable curative activities against PVY, with a half maximal effective concentration (EC50) of 349.3 µg mL-1, which was lower than that of the ningnanmycin (NNM) (EC50 = 400.8 µg mL-1). Additionally, The EC50 value for the protective effects of (S)-4u was 146.2 µg mL-1, which was superior to that of NNM (276.4 µg mL-1). Furthermore, the mechanism-of-action of enantiomers of planar chiral compound 4u was investigated through molecular docking, defensive enzyme activity tests and chlorophyll content tests. CONCLUSION: Biological mechanism studies have demonstrated that the configuration of planar chiral target compounds plays a crucial role in the molecular interaction with PVY-CP, enhancing the activity of defense enzymes and affecting chlorophyll content. The current study has provided significant insights into the roles played by planar chiralities in plant protection against viruses. This paves the way for the development of novel green pesticides bearing planar chiralities with excellent optical purities. © 2024 Society of Chemical Industry.

8.
J Agric Food Chem ; 72(18): 10218-10226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666644

ABSTRACT

In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.


Subject(s)
Drug Design , Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Plant Weeds , Protoporphyrinogen Oxidase , Pyrrolidinones , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/chemical synthesis , Plant Weeds/drug effects , Plant Weeds/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Pyrrolidinones/chemical synthesis , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Amaranthus/drug effects , Amaranthus/chemistry , Echinochloa/drug effects , Echinochloa/enzymology , Digitaria/drug effects , Digitaria/enzymology , Digitaria/chemistry , Lolium/drug effects , Lolium/enzymology , Molecular Structure
9.
Research (Wash D C) ; 7: 0293, 2024.
Article in English | MEDLINE | ID: mdl-38628355

ABSTRACT

An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.

10.
Angew Chem Int Ed Engl ; : e202404477, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669345

ABSTRACT

Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecules bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that these phosphorus substrates exhibit intrinsic PnB interactions between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrates in a preferred conformation (P212121 chiral group). Under the catalysis of N-heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus products with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.

11.
J Agric Food Chem ; 72(13): 6979-6987, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520352

ABSTRACT

Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 µg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 µg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.


Subject(s)
Potyvirus , Tobacco Mosaic Virus , Structure-Activity Relationship , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Indoles/pharmacology , Drug Design
12.
Nat Commun ; 15(1): 958, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302464

ABSTRACT

Macrolactones exhibit distinct conformational and configurational properties and are widely found in natural products, medicines, and agrochemicals. Up to now, the major effort for macrolactonization is directed toward identifying suitable carboxylic acid/alcohol coupling reagents to address the challenges associated with macrocyclization, wherein the stereochemistry of products is usually controlled by the substrate's inherent chirality. It remains largely unexplored in using catalysts to govern both macrolactone formation and stereochemical control. Here, we disclose a non-enzymatic organocatalytic approach to construct macrolactones bearing chiral planes from achiral substrates. Our strategy utilizes N-heterocyclic carbene (NHC) as a potent acylation catalyst that simultaneously mediates the macrocyclization and controls planar chirality during the catalytic process. Macrolactones varying in ring sizes from sixteen to twenty members are obtained with good-to-excellent yields and enantiomeric ratios. Our study shall open new avenues in accessing macrolactones with various stereogenic elements and ring structures by using readily available small-molecule catalysts.

13.
J Agric Food Chem ; 72(9): 4622-4629, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386000

ABSTRACT

A new class of chiral pyranone fused indole derivatives were prepared by means of N-heterocyclic carbene (NHC) organocatalysis and demonstrated notable antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo). Bioassays showed that compounds (3S,4R)-5b, (3S,4R)-5d, and (3S,4R)-5l exhibited promising in vitro efficacy against Xoo, with EC50 values of 9.05, 9.71, and 5.84 mg/L, respectively, which were superior to that of the positive controls with commercial antibacterial agents, bismerthiazol (BT, EC50 = 27.8 mg/L) and thiodiazole copper (TC, EC50 = 70.1 mg/L). Furthermore, single enantiomer (3S,4R)-5l was identified as an optimal structure displaying 55.3% and 52.0% curative and protective activities against Xoo in vivo tests at a concentration of 200 mg/L, which slightly surpassed the positive control with TC (curative and protective activities of 47.2% and 48.8%, respectively). Mechanistic studies through molecular docking analysis revealed preliminary insights into the distinct anti-Xoo activity of the two single enantiomers (3S,4R)-5l and (3R,4S)-5l, wherein the (3S,4R)-configured stereoisomer could form a more stable interaction with XooDHPS (dihydropteroate synthase). These findings underscore the significant anti-Xoo potential of these chiral pyranone fused indole derivatives, and shall inspire further exploration as promising lead structures for a novel class of bactericides to combat bacterial infections and other plant diseases.


Subject(s)
Oryza , Xanthomonas , Oryza/microbiology , Stereoisomerism , Molecular Docking Simulation , Microbial Sensitivity Tests , Oxadiazoles/chemistry , Anti-Bacterial Agents/chemistry , Plant Diseases/prevention & control , Plant Diseases/microbiology , Indoles/pharmacology
14.
J Am Chem Soc ; 146(8): 5502-5510, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359445

ABSTRACT

Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.


Subject(s)
Amides , Amino Acids , Nickel/chemistry , Peptides , Carbohydrates/chemistry , Glycopeptides , Glycoproteins , Catalysis
16.
Org Lett ; 26(8): 1584-1588, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38377184

ABSTRACT

We have developed a catalytic method using chiral N-heterocyclic carbene (NHC) as the sole organic catalyst to synthesize planar chiral carbonitriles asymmetrically, resulting in optically pure, multifunctional compounds. The method demonstrates remarkable tolerance toward diverse substituents and substitution patterns through kinetic resolution (KR) or desymmetrization processes. The resulting optically pure planar chiral products hold significant potential for applications in asymmetric synthesis and antibacterial pesticide development.

17.
J Agric Food Chem ; 72(5): 2501-2511, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270648

ABSTRACT

To discover protoporphyrinogen oxidase (PPO) inhibitors with robust herbicidal activity and crop safety, three types of substituted 3-(pyridin-2-yl)phenylamino derivatives bearing amide, urea, or thiourea as side chain were designed via structure splicing strategy. Postemergence herbicidal activity assessment of 33 newly prepared compounds revealed that many of our compounds such as 6a, 7b, and 8d exhibited superior herbicidal activities against broadleaf and monocotyledon weeds to commercial acifluorfen. In particular, compound 8d exhibited excellent herbicidal activities and high crop safety at a dosage range of 37.5-150 g ai/ha. PPO inhibitory studies supported our compounds as typical PPO inhibitors. Molecular docking studies revealed that compound 8d provided effective interactions with Nicotiana tabacum PPO (NtPPO) via diverse interaction models, such as π-π stacking and hydrogen bonds. Molecular dynamics (MD) simulation studies and degradation studies were also conducted to gain insight into the inhibitory mechanism. Our study indicates that compound 8d may be a candidate molecule for the development of novel herbicides.


Subject(s)
Herbicides , Herbicides/chemistry , Molecular Docking Simulation , Plant Weeds , Nicotiana , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , Protoporphyrinogen Oxidase
18.
J Am Chem Soc ; 146(1): 824-832, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38123470

ABSTRACT

Glucose and its polyhydroxy saccharide analogs are complex molecules that serve as essential structural components in biomacromolecules, natural products, medicines, and agrochemicals. Within the expansive realm of saccharides, a significant area of research revolves around chemically transforming naturally abundant saccharide units to intricate or uncommon molecules such as oligosaccharides or rare sugars. However, partly due to the presence of multiple hydroxyl groups with similar reactivities and the structural complexities arising from stereochemistry, the transformation of unprotected sugars to the desired target molecules remains challenging. One such formidable challenge lies in the efficient and selective activation and modification of the C-O bonds in saccharides. In this study, we disclose a modular 2-fold "tagging-editing" strategy that allows for direct and selective editing of C-O bonds of saccharides, enabling rapid preparation of valuable molecules such as rare sugars and drug derivatives. The first step, referred to as "tagging", involves catalytic site-selective installation of a photoredox active carboxylic ester group to a specific hydroxyl unit of an unprotected sugar. The second step, namely, "editing", features a C-O bond cleavage to form a carbon radical intermediate that undergoes further transformations such as C-H and C-C bond formations. Our strategy constitutes the most effective and shortest route in direct transformation and modification of medicines and other molecules bearing unprotected sugars.


Subject(s)
Carbohydrates , Sugars , Glucose , Oligosaccharides , Hydroxyl Radical
19.
Org Lett ; 25(46): 8252-8257, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37955414

ABSTRACT

Disclosed here is NHC-catalyzed direct intermolecular trapping of the ketone oxygen atom with the acyl azolium intermediate. The overall reaction is a dynamic kinetic resolution process that converts ketone to the corresponding enol ester with well-controlled axial chirality. Our reaction eventually affords non-C2-symmetric binaphthyl derivatives with important applications, such as in the area of asymmetric catalysis.

20.
Org Lett ; 25(48): 8706-8710, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37988556

ABSTRACT

We present a new reaction between carboxylic acids and allene ketones mediated by N-heterocyclic carbene (NHC) catalysts, which exhibit, in principle, nearly perfect atom economy. In this new approach, allene ketones act as both an activating reagent and a reactant. All atoms in the substrates end up in the product without the need for coupling reagents. The present study aims to encourage further explorations of NHC catalytic reactions with alternative activation strategies and better atom economy.

SELECTION OF CITATIONS
SEARCH DETAIL
...