Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Langmuir ; 28(40): 14496-501, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22974772

ABSTRACT

The possibility of lateral extension of conjugation within a covalently grafted molecular layer by a scanning probe-based method was tested. A molecular layer derived from ω-(N-pyrrolyl)propanol was formed on n-type Si(111) surface. Application of large sample biases greater than ±4 V during conductive atomic force microscope (AFM) scans under vacuum resulted in changes of mechanical and electrical characteristics of the molecular layer: the tip-sample conductance was increased greatly, the friction was reduced significantly, and the surface potential of the scanned area was increased. The reduction in friction could be attributed to molecular linking formed within the layer. The increased conductance suggested extended conjugation among the pyrrolyl end groups. Therefore, it was inferred that the biased AFM scan successfully induced local polymerization/oligomerization within the covalently grafted molecular layer.

2.
J Nanosci Nanotechnol ; 11(7): 6400-3, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121723

ABSTRACT

The nanogap devices, which comprise multiple electrodes separated by a few to a few tens of nanometers, have opened up new possibilities in biomolecular sensing as well as various frontier electronics. One of the key aspects of the nanogap device research is how to control the gap distance following each specific needs of the gap structure. Here, we report the extensive study on the fine control of the gap distance between electrodes within the range of 1-80 nm via surface-catalyzed chemical deposition. The initial gap electrodes were prepared via conventional e-beam lithography, and the gap distance was narrowed to a designed value through the surface-catalyzed reduction of gold ion on the predefined electrode surfaces, by simple dipping of the electrodes into the aqueous solution of gold chloride and hydroxylamine. The final gap distance was controlled by adjusting the repetition number, reductant concentration, reaction time, and reaction temperature. The dependence of the gap-narrowing reaction on these parameters was systematically examined based on the results of field emission scanning electron microscopy and atomic-force microscopy.

3.
J Nanosci Nanotechnol ; 11(1): 656-60, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21446518

ABSTRACT

Carbon capsules with hierarchical pore structures were fabricated by using core-shell silica nanoparticles as templates and phenolic resin as a carbon precursor. Carbon capsules with hierarchical pore structures were obtained via in-situ polymerization of the phenolic resin on the surface of the silica nanoparticles followed by the carbonization and removal of the silica templates. The hierarchically pored carbon capsules exhibited multimodal porosity with a high specific surface area (approximately 1834 m2/g) and a large pore volume (approximately 1.83 cm3/g).

4.
Chem Asian J ; 4(1): 135-42, 2009 Jan 05.
Article in English | MEDLINE | ID: mdl-19039817

ABSTRACT

Asymmetrically functionalized, four-armed, Tween 20 derivatives that formed stable monomolecular films on solid substrates were designed and synthesized. Thiol-modified Tween 20 was used for forming self-assembled monolayers (SAMs) on gold, and maleimide-modified Tween 20 was introduced onto SiO(2) surfaces with SAMs of (3-mercaptopropyl)trimethoxysilane through Michael addition. These structurally modified Tween 20 compounds gave the original characteristics of Tween 20, non-biofouling (from ethylene glycol groups) and functionalizable (from OH groups) properties, to each substrate. The non-biofouling properties of the Tween 20-coated gold and SiO(2) surfaces were investigated by surface plasmon resonance spectroscopy and ellipsometry, and these surfaces showed strong resistance against nonspecific adsorption of proteins. In addition, the biospecific binding of streptavidin was achieved after coupling of (+)-biotinyl-3,6,9-trioxaundecanediamine onto the non-biofouling surfaces through amide-bond formation.


Subject(s)
Polysorbates/chemistry , Biotin/chemical synthesis , Biotin/chemistry , Gold/chemistry , Immobilization , Polysorbates/chemical synthesis , Silanes/chemical synthesis , Silanes/chemistry , Streptavidin/chemistry , Surface Plasmon Resonance
5.
Phys Chem Chem Phys ; 10(21): 3138-49, 2008 Jun 07.
Article in English | MEDLINE | ID: mdl-18688379

ABSTRACT

Molecular ordering of pyrrolyl-terminated alkanethiol self-assembled monolayers (PyC(n)SH SAMs) on Au(111) substrates (n = 11 or 12) was investigated by scanning tunneling microscopy (STM) and various spectroscopic methods. The SAMs, which were in a disordered state when formed at room temperature, could be ordered either globally by thermal annealing at 70 degrees C, or locally via stimulation with repetitive STM scans. The ordered phase was characterized by small domains of molecular rows formed along 112[combining macron] directional set with an inter-row corrugation period close to 1.44 nm, in which defects were abundant. Based on the experimental results, the molecular arrangement in the ordered PyC(n)SH SAM was proposed to be a (5x radical3)rect structure with a molecular deficiency >or=10%. While mechanical interactions between molecules and scanning probe tips had been pointed out as the major cause of scan-induced phase transformations in other SAM systems, electronic or electrostatic factors were thought to affect considerably the scan-induced ordering process in this SAM system. From comparison of surface molecular coverage between disordered and thermally ordered SAMs of PyC(12)SH, it was inferred that the disorder could be ascribed to both kinetic and thermodynamic factors. The kinetic barrier to the ordered phase was supposed to result from strong dipole-dipole interactions among the pyrrolyl endgroups.

6.
Biomacromolecules ; 8(12): 3922-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18039000

ABSTRACT

Thin films of a biocompatible and nonbiofouling poly(oligo(ethylene glycol) methacrylate) ( pOEGMA) with various thicknesses were formed on gold and Si/SiO 2 substrates by a combination of the formation of self-assembled monolayers (SAMs) terminating in bromoester-an initiator of atom transfer radical polymerization (ATRP)-and surface-initiated ATRP. After the formation of the pOEGMA films, terminal hydroxyl groups of side chains divergent from the methacrylate backbones were activated with N, N'-disuccinimidyl carbonate (DSC), and the DSC-activated pOEGMA films were reacted with (+)-biotinyl-3,6,9-trioxaundecanediamine (Biotin-NH 2) to form biotinylated pOEGMA films. By surface plasmon resonance experiments with the target protein (streptavidin) and model proteins (fibrinogen and lysozyme), we verified that the resulting films showed the enhanced signal-to-noise ratio ( approximately 10-fold enhancement) for the biospecific binding of streptavidin compared with the biotinylated substrate prepared from carboxylic acid-terminated SAMs. Quartz crystal microbalance measurements were also carried out to obtain the surface coverage of streptavidin and fibrinogen adsorbed onto the biotinylated pOEGMA films with various thicknesses and to investigate the effect of film thicknesses on the biospecific binding of streptavidin. Both the binding capacity of streptavidin and the signal-to-noise ratio of streptavidin/fibrinogen were found to be saturated at the 20 nm thick pOEGMA film. In addition, to demonstrate a wide applicability of the pOEGMA films, we constructed micropatterns of streptavidin and cells by microcontact-printing biotin-NH 2 and poly- l-lysine onto the DSC-activated pOEGMA films, respectively.


Subject(s)
Gold/analysis , Methacrylates/analysis , Polyethylene Glycols/analysis , Quartz/analysis , Silicon/analysis , Surface Plasmon Resonance/methods , Animals , CHO Cells , Cricetinae , Cricetulus , Gold/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Quartz/chemistry , Silicon/chemistry
8.
Chemistry ; 13(22): 6351-8, 2007.
Article in English | MEDLINE | ID: mdl-17492807

ABSTRACT

Gold had been considered to be an extremely inert metal, but recently it was found that nanometer-sized gold particles on metal-oxide supports acted as catalysts for simple organic reactions, such as oxidation and hydrogenation, even at or below room temperature. Herein, we report that gold nanoparticles (AuNPs) of zero oxidation state (Au0) are catalytically active for a C--C bond-forming reaction, the cyanosilylation of aldehydes. The AuNP-catalyzed cyanosilylation proceeded smoothly at room temperature with 0.2 wt % loading of AuNPs. The reactions of aromatic aldehydes were almost quantitative, except for benzaldehyde derivatives containing the electron-withdrawing NO2 group, and alpha,beta-unsaturated aromatic aldehydes were the most reactive substrates. The reactions also went smoothly for aliphatic aldehydes. Mechanistic studies indicated that the reactions proceeded both homogeneously and heterogeneously: homogeneous catalysis by leached gold species and heterogeneous catalysis by the adsorption of the reactants (aldehydes and trimethylsilyl cyanide) onto AuNPs. The ratio of homogeneous and heterogeneous catalysis was estimated to be approximately 4:1.

9.
Langmuir ; 23(3): 1209-14, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17241034

ABSTRACT

This report describes the reactivity of acid fluoride (AF)-terminated self-assembled monolayers (SAMs) on gold toward amine and alcohol compounds and the potentiality of AF as a reactive intermediate for surface functionalizations. The AF group was generated in situ on a gold surface by reacting the terminal carboxylic acid group in the SAM of 16-mercaptohexadecanoic acid with cyanuric fluoride and pyridine under the optimized conditions. AF was found to be highly reactive toward various amine groups, such as primary and secondary amines, but it did not react effectively with alcohol. In addition, the amide coupling reaction by microcontact printing (microCP) was compared with the solution-based reaction: when amine-derivatized ferrocene compound was used for 1-min microCP on the AF-activated surface, the surface coverage of the reaction product was about 83% of 3.45 x 1014 cm-2, the coverage obtained in the solution-based reaction. On the basis of the high reaction efficiency of microCP, the AF-activated surface was also used as a platform for patterning a biological ligand, biotin.


Subject(s)
Carboxylic Acids/chemistry , Fluorides/chemistry , Gold/chemistry , Alcohols , Amines , Biotin , Palmitic Acids , Triazines
10.
Langmuir ; 22(16): 6956-60, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16863245

ABSTRACT

In this paper, we report the reactivity of fluoro-N,N,N',N'-tetramethylformamidinium hexafluorophosphate (TFFH), a reagent for transformation of carboxylic acids into acid fluorides in solution, toward self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid on gold. Contrary to the solution-based reactions, we found that only interchain carboxylic anhydrides (ICAs), not acid fluorides (AFs), were obtained at surfaces by the facile interchain reaction under most reaction conditions studied. AFs were found to be formed only when tetrabutylammonium fluoride, a reagent inducing fast decomposition of ICAs, was added to the reaction mixture. The reactivity of TFFH toward carboxylic acid-terminated SAMs was different from that of cyanuric fluoride, which has been reported previously (Langmuir 2005, 21, 11765-11772). This study provides more insight into the role of the proximity effect in SAM-based reactions as well as another approach to the formation of ICAs from carboxylic acid-terminated SAMs.

12.
Chem Commun (Camb) ; (2): 183-5, 2006 Jan 14.
Article in English | MEDLINE | ID: mdl-16372099

ABSTRACT

Asymmetric electrostatic interactions dependent on pH between the redox molecules and the terminal group on the top of the self-assembled monolayer (SAM) afford control of the electron transfer property of the SAM having the imidazole terminal group.


Subject(s)
Imidazoles/chemistry , Membranes, Artificial , Electrodes , Electrons , Gold/chemistry , Hydrogen-Ion Concentration , Kinetics , Molecular Structure , Oxidation-Reduction , Static Electricity , Surface Properties
13.
J Nanosci Nanotechnol ; 6(11): 3507-11, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17252800

ABSTRACT

Self-assembled polymeric monolayers (PMs) on Si/SiO2 wafers were prepared in water from a series of random copolymers of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(trimethoxysilyl)propyl methacrylate (TMSMA), denoted as poly(TMSMA-r-PEGMA). Four polymers of poly(TMSMA-r-PEGMA) were synthesized by free radical polymerization with a systematic variation of co-monomer feed ratios. Regardless of PEG grafting density in the copolymers, all PMs formed approximately 1 nm-thick film as measured by ellipsometry. However, the PMs with a higher grafting density of PEG resulted in more hydrophilic surfaces in terms of water contact angle. The protein resistance of the PMs was evaluated using bovine serum albumin (BSA) as a model protein. Analyses by ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) showed that the PMs of the copolymers markedly reduced the nonspecific adsorption of proteins compared to the unmodified Si/SiO2 wafers. The study also revealed that the PMs prepared from the copolymers with a higher PEG grafting density were more effective in resisting the nonspecific protein adsorption.


Subject(s)
Polyethylene Glycols/chemistry , Polymers/chemistry , Proteins/chemistry , Silanes/chemistry , Adsorption , Animals , Cattle , Electron Probe Microanalysis , Materials Testing , Microscopy, Atomic Force , Models, Chemical , Nanotechnology/instrumentation , Nanotechnology/methods , Serum Albumin, Bovine/chemistry , Silicon/chemistry , Silicon Dioxide/chemistry , Surface Properties , Water/chemistry
14.
Langmuir ; 21(25): 11765-72, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16316112

ABSTRACT

Reactions that occur at interfaces often show different behaviors from their solution analogues. In this paper, we demonstrated how proximity effect, one of the unique phenomena at interfaces, could control the product distributions of interfacial reactions. Self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid on gold surfaces were treated with cyanuric fluoride and pyridine, which are generally used for forming acid fluorides from carboxylic acids in the solution-based reaction. After the treatment, two different products, acid fluorides (AFs) and interchain carboxylic anhydrides (ICAs), were controllably obtained at surfaces under different reaction conditions with keeping the reagents the same. Various factors, such as the concentrations of reagents, reaction time, and additives, affected the product distribution (or the reaction pathway) at surfaces. We found that one of the key factors in controlling the reaction pathway was a relative contribution from the proximity effect of adjacent carboxylic acid chains in the SAMs (kinetic control) and the equilibrium shift (thermodynamic control). The relative reactivity of AF- and ICA-presenting surfaces toward primary amines, such as undecylamine and [((6-aminohexyl)amino)carbonyl]ferrocene, was also investigated, in terms of the number and the ordering of the amines coupled onto the surfaces.

15.
Langmuir ; 21(23): 10311-5, 2005 Nov 08.
Article in English | MEDLINE | ID: mdl-16262283

ABSTRACT

We report in-plane enyne metathesis and subsequent Diels-Alder reactions on self-assembled monolayers (SAMs) terminating in vinyl and acetylenyl groups on gold. After the formation of SAMs of vinyl and acetylenyl group-containing dithiols on gold, in-plane enyne metathesis of the vinyl and acetylenyl groups, leading to the formation of 1,3-diene, was achieved on the SAMs, and Diels-Alder reactions were then successfully performed with tetracyanoethylene, maleic anhydride, and maleimide. The reactions were confirmed by FT-IR spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary-ion mass spectrometry. In-plane enyne metathesis developed herein would offer a versatile platform for the functionalization of surfaces with mild reaction conditions and a high compatibility in functional groups.

16.
Langmuir ; 21(10): 4268-71, 2005 May 10.
Article in English | MEDLINE | ID: mdl-16032833

ABSTRACT

1,3-Dialkylimidazolium salts, known as one of the ionic liquids, are very attractive molecules because their physicochemical properties can easily be tuned by the variation of the alkyl appendages of the imidazolium cations and counteranions. In this paper we report that the self-assembled monolayers (SAMs) terminating in 1,3-dialkylimidazolium salts with various counteranions [except Fe(CN)6(3-)] on a gold substrate exhibited a selective electron-transfer toward redox-probe molecules: the electron transfer occurred in the presence of Fe(CN)6(3-) (anionic redox-probe molecule) but did not occur in the presence of Ru(NH3)6(3+) (cationic redox-probe molecule). The SAM having Fe(CN)6(3-) as an anion showed the electron-transfer toward Ru(NH3)6(3+), and the Ru3+/2+ redox-switchable SAM was generated by reversible anion exchange between Fe(CN)6(3-) and SCN (or OCN-).

17.
Langmuir ; 21(10): 4669-73, 2005 May 10.
Article in English | MEDLINE | ID: mdl-16032887

ABSTRACT

In this paper, we report surface-initiated d(A-T) polymerization by Taq DNA polymerase as a method for constructing DNA-tethered surfaces using an enzyme. The enzymatic polymerization was conducted successfully via two steps: tethering of oligo d(A-T)s onto the surface presenting carboxylic acids by amide coupling and surface-initiated polymerization using Taq DNA polymerase. In this enzymatic polymerization process, the design and construction of carboxylic acid-presenting surfaces were found to be an important factor: DNA growth did not occur on the gold surface coated only with the self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHDA), but effectively proceeded on the surfaces presenting mixed SAMs of MHDA and 1-pentadecanethiol. The coupling of oligo d(A-T)s and the subsequent DNA polymerization reaction were characterized by polarized infrared external reflectance spectroscopy, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy.


Subject(s)
Poly dA-dT/chemistry , Taq Polymerase , Gold , Microscopy, Atomic Force , Palmitic Acids , Poly dA-dT/biosynthesis , Spectrophotometry, Infrared , Spectrum Analysis , Surface Properties , Taq Polymerase/chemistry , Taq Polymerase/metabolism , X-Rays
18.
Langmuir ; 20(19): 7904-6, 2004 Sep 14.
Article in English | MEDLINE | ID: mdl-15350051

ABSTRACT

Biosilicification in diatoms is achieved by specific interactions between silaffins, composed of polypeptides and long-chain polyamines, and silicic acid derivatives. The polycondensation of silicic acids is reported to be catalyzed by the long-chain polyamines that mainly contain tertiary N-methylpropyleneimine moieties. In this report, we utilized a tertiary amine-containing polymer, poly(2-(dimethylamino)ethyl methacrylate) (poly(DMAEMA)), as a surface-grafted, biomimetic counterpart of the long-chain polyamines in silaffins and demonstrated that the surface-initiated polycondensation of silicic acids, leading to the formation of silica thin films, proceeded smoothly on surfaces presenting poly(DMAEMA), where poly(DMAEMA) was grown from gold surfaces by surface-initiated, atom transfer radical polymerization. The formed silica film was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy.


Subject(s)
Membranes, Artificial , Methacrylates/chemistry , Silicic Acid/chemistry , Silicon Dioxide/chemical synthesis , Gold/chemistry , Particle Size , Silicon Dioxide/chemistry , Surface Properties
19.
J Am Chem Soc ; 126(2): 480-1, 2004 Jan 21.
Article in English | MEDLINE | ID: mdl-14719941

ABSTRACT

Self-assembled monolayers presenting imidazolium ions at the tail ends (SAMIMs) having different counteranions have been prepared on Au, and the measurement of water contact angles of the surfaces proved to be an extremely valuable simple technique for quantifying the effects of counteranions on hydrophilicity and hydrophobicity of SAMIMs, which will be extrapolated to the water miscibility of the related ionic liquids.

20.
Langmuir ; 20(8): 3024-7, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15875824
SELECTION OF CITATIONS
SEARCH DETAIL
...