Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(12): 5623-5633, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38471143

ABSTRACT

Recently emerging perovskite nanocrystals (PNCs) are very attractive fluorescence nanomaterials due to their very narrow emission peak, tunable wavelength, and extremely high quantum yield, but their chemosensing, biosensing and bioimaging applications suffer from the poor stability of ordinary PNCs in aqueous media, especially in biological matrices. Recently developed water-stable 2D CsPb2Br5-encapsulated 3D CsPbBr3 PNCs (i.e., CsPbBr3/CsPb2Br5 PNCs) show extremely stable light emission in pure water, but their fluorescence is seriously quenched in aqueous media containing biological molecules due to their chemical reactions. In this work, we used a facile method to encapsulate pure water-stable CsPbBr3/CsPb2Br5 PNCs in water with SiO2 and polyethylene glycol hexadecyl ether (Brij58) into a new kind of biological environment-stable PNCs (CsPbBr3/CsPb2Br5@SiO2-Brij58). The synthesis of the target PNCs can be accomplished in a fast, easy, and green way. The obtained CsPbBr3/CsPb2Br5@SiO2-Brij58 PNCs maintain strong fluorescence emission for a long time, all in pH 7.4 PBS, BSA, and minimum essential medium, exhibiting excellent biological environment stability. Moreover, the developed biological environment-stable PNCs show good biocompatibility and have been successfully used in cell imaging. Overall, the work provides an easy, low-cost, and efficient application of PNCs in bioimaging.


Subject(s)
Calcium Compounds , Nanoparticles , Oxides , Titanium , Water , Cetomacrogol , Silicon Dioxide
2.
Anal Chem ; 96(14): 5711-5718, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38551104

ABSTRACT

Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.

3.
Small ; 20(29): e2311993, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38363065

ABSTRACT

Excessive ultraviolet (UV) radiation has serious damage to human's health, therefore the development of visible, portable, and wearable sensor for monitoring UV radiation, especially the cumulative UV dosage, is highly desired but full of challenges. Herein, a wearable and flexible UV dosimeter based on photochromic perovskite nanocrystals (PNCs) is designed. The obtained CsPbCl3 PNCs dispersed in dibromomethane (PNCs-DBM) undergo continuous, vivid, and multiple (from very weak purple to blue, cyan, and finally strong green) color change in response to UV radiation. It is demonstrated that the UV-induced degradation of DBM and subsequent anion-exchange reaction between CsPbCl3 and Br-, play a crucial role in the color change of PNCs-DBM. The properties of continuous fluorescence color change and enhanced fluorescence intensity enable the construction of sensitive and visible UV dosimeter. Furthermore, by integrated photochromic PNCs with flexible bracelet or PDMS substrate, a wearable UV sensor or a multi-indicator array for the detection of solar UV dosage is developed. This work may advance the fundamental understanding about photochromic perovskite, and show promising application of perovskite nanomaterials in easily fabricated, low-cost, visualized, and wearable solar UV dosimeter.

4.
Anal Chem ; 95(30): 11475-11482, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37471238

ABSTRACT

As recently emerging nanomaterials, boron nanosheets (BNSs) have attracted more and more attention in various fields such as supercapacitors, photodetectors, bioimaging, and electrocatalysis due to their advantages of good biological compatibility, environmental friendliness, and good electro-optical properties. However, the study and application of BNSs in chemical and biological sensing are still in the infant stage, mainly due to the requirement of complicated, high-cost, and time-consuming preparation strategies. In this work, a new class of BNSs, namely oxidized-BNSs (i.e., ox-BNSs), were easily and rapidly synthesized by chemically treating boron powder with diluted HNO3 in a very short time (less than 15 min). The composition, morphology, optical property, and peroxidase mimetic activity of obtained ox-BNSs were investigated in detail. The prepared ox-BNSs were several-layered nanosheets with abundant oxygen-containing groups, emitted blue fluorescence, and possessed good intrinsic peroxidase mimetic activity, based on which a sensitive and selective colorimetric sensor was developed for detection of H2O2 and glucose. The new easy preparation strategy and good sensing performances of the prepared ox-BNSs would greatly stimulate the study and application of BNSs in chemo- and biosensing.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Boron , Hydrogen Peroxide/chemistry , Glucose , Nanostructures/chemistry , Peroxidases/chemistry , Colorimetry/methods , Peroxidase/chemistry , Biosensing Techniques/methods
5.
Anal Chem ; 95(31): 11839-11848, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37489605

ABSTRACT

Recently, the newly emerging lead halide perovskite nanocrystals (PNCs) have been intensely researched in many fields, such as light-emitting diodes (LEDs), solar cells, lasers, and display devices. The extremely high fluorescence quantum yield (near 100%) of PNCs over classic fluorescent materials would enable good applications of PNCs in sensing. However, the study on PNCs for bio- and chemical sensing, especially for detecting targets that exist in aqueous medium, faces great challenges due to the well-known instability of PNCs in polar solvents, especially water. Although the encapsulation of polymers or inorganic materials can efficiently protect PNCs from decomposition in aqueous solution, the sensing based on the interaction between PNCs and targets is severely hindered by the compact protection coating at the surfaces of PNCs. In this work, novel water-dispersed PNCs (W-PNCs), i.e., CsPbBr3@CsPb2Br5 PNCs, with strong fluorescence and excellent water stability were synthesized from OAm-capped CsPbBr3 PNCs by a simple "oil-solid-water" phase transition. The W-PNCs without being encapsulated with compact polymers or inorganic materials can sensitively and stably sense targets in the pure water phase via direct chemical reactions. For the first time, ion exchanges between PNCs and halide ions and their effects on the fluorescence wavelength of PNCs were investigated in the pure water phase, on the basis of which a new, visualized, selective, and sensitive smartphone-based sensing platform for halide ions has been established by the integration of the conveniently prepared W-PNC nanoprobe and the portable mobile phone. It is envisioned that the uncoated but extremely water-stable and highly fluorescent W-PNCs have promising applications in chemical sensing, biosensing, and bioimaging of targets in aqueous medium.

6.
Small ; 19(33): e2301010, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086127

ABSTRACT

The intrinsic instability of halide perovskites toward to external stimulus, has created a competitive advantage for designing stimuli-responsive materials. However, the external environment tuning reversibly fluorescence emission of perovskite system is still limited. In this work, humidity is verified to act as a new option to modulate the emission properties of mixed-halide perovskite. The perovskite nanocrystals (PNCs) photoirradiated in dichloromethane are easily and stably redispersed in water, and emit bright fluorescence which is quite different from the original. Moreover, the perovskites confined on glass slide can reversibly switch their fluorescence between blue and green colors under moisture. It is demonstrated that the factors of different solubilities of CsCl and CsBr in water, the structural transformation of perovskites and the confine of glass matrix play key roles in the reversible transformation. Finally, the combination of hydrochromic CsPb(Brx Cly )3 and water-resistant CsPb(Brx Cly )3 -polymethyl methacrylate have been applied in advanced anti-counterfeiting, which greatly improves the information security. This work not only give an insight into the effects of humidity on fluorescence and structures of PNCs, but also offer a new class of hydrochromic PNCs materials based on reversible emission transformation for potential application in sensors, anti-counterfeiting and information encryption.

7.
Anal Chem ; 94(49): 17142-17150, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36444997

ABSTRACT

Perovskite quantum dots (PQDs) as recently emerging electrochemiluminescence (ECL) luminophores have been paid much attention due to their good ECL activity, narrow ECL spectra, and easy preparation. However, the PQDs used for ECL sensing were mainly inherited from those PQDs prepared as strong fluorescence (FL) luminophores, which would limit the finding of highly ECL PQDs for sensing due to the very different mechanisms in generating excited-state luminophores between ECL and FL. In order to obtain highly electrochemiluminescent PQDs, for the first time we proposed to synthesize PQDs for ECL sensing rather than for FL-based analysis by optimizing the synthesis conditions. It was revealed that the volume of the precursor solution, the concentrations of CsBr and PbBr2, the amount of capping reagents, and the synthesis reaction temperature all significantly affect the ECL activity of PQDs. On the basis of the optimization of the synthesis conditions, we obtained a new type of PQDs with high ECL activity. The new PQDs were characterized by several technologies, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray spectrum, to be the hybrids of 3D PQDs (CsPbBr3) and 0D PQDs (Cs4PbBr6) with unique morphologies, i.e., Cs4PbBr6@CsPbBr3 PQD nanoacanthospheres (PNAs), in which Cs4PbBr6 was as the core and CsPbBr3 served as the shell. The obtained Cs4PbBr6@CsPbBr3 PNAs had much higher (>4 times) ECL activity than the prevailing 3D (CsPbBr3) PQDs. Finally, the novel Cs4PbBr6@CsPbBr3 PNAs have been applied for the ECL sensing of bisphenol A (BPA), showing a promising application of the highly electrochemiluminescent PQDs in analytical chemistry.

8.
Chem Sci ; 13(35): 10315-10326, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36277656

ABSTRACT

Photoresponsive luminescent materials (PLMs) have attracted much attention in various optoelectronic fields, especially in optical data storage. Multi-wavelength (N-wavelength) based optical storage is a promising approach to increase the data storage density, but its current application is limited by the fact that most PLMs have only two-wavelength emissive states after certain light excitation, which requires simultaneous use of several PLMs and different irradiation light sources. In this study, we discovered that the wavelength of perovskite nanocrystals (PNCs) in the presence of dichloromethane (DCM) could be continuously and precisely tuned over a very wide color range (from red to violet) with the help of a single UV light source. The changes in crystal structures and optical properties of PNCs during UV irradiation were investigated in detail; the effects of capping ligand, solvent, UV irradiation power and time were evaluated, and the mechanism of UV triggered PNC fluorescence change was studied and is discussed. Finally, the applicability of PNCs/DCM film in N-wavelength-based high-density optical data storage was verified.

9.
Article in English | MEDLINE | ID: mdl-35819234

ABSTRACT

In recent years, lead halide perovskite nanocrystals (PNCs) have presented potential scalable applications in all fields due to their outstanding properties. However, most commonly used PNCs capped with oleic acid (OA) and oleylamine (OAm) suffer from bad stability in polar solutions and thus require various surface protections with organic or inorganic materials. Encapsulation with highly hydrophobic polystyrene (PS) is one of the most efficient ways to protect PNCs; however, the presently used swelling-shrinking strategy faces several challenges, such as weak interaction between PS chains and the surface ligands in nonpolar media causing a low encapsulation efficiency, and serious aggregation of PS particles during the shrinkage process leading to very different particle sizes. Herein, alcohol-stable polyacrylic acid-capped CsPbBr3 PNCs (i.e., PAA-PNCs) are first synthesized and then in situ encapsulated with PS shells by polymerizing styrene monomer on the PNC surfaces in a polar organic solvent (e.g., ethanol). The in situ PS-encapsulated PAA-PNCs (i.e., PAA-PNCs@iPS) exhibit outstanding monodispersity, remarkable water, heat, and UV stability, high fluorescence activity, and color purity. The unique synthesis strategy and good performances of PAA-PNCs@iPS will boost the applications of PNCs in LEDs, biological imaging, and chemosensing.

10.
Analyst ; 147(13): 3096-3100, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35695068

ABSTRACT

Oxidized multi-walled carbon nanotube/nano-gold (AuNP-ox-MWCNT) composites with strong electrochemiluminescence (ECL) activity were applied to construct a new ECL immunosensor for the detection of carcinoembryonic antigen (CEA). The immunosensor showed a linear response range of 10-100 ng mL-1 and detection limit of 0.76 ng mL-1 (at a signal-to-noise ratio of 3). The as-developed immunosensor exhibited several advantages, including being simple to fabricate and being label free. The results indicated that ox-MWCNTs as a luminescent material have great application potential in analysis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Biosensing Techniques/methods , Carcinoembryonic Antigen/analysis , Electrochemical Techniques/methods , Gold , Immunoassay , Limit of Detection , Luminescent Measurements/methods
11.
Analyst ; 146(24): 7545-7553, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34812805

ABSTRACT

Excessive copper ions (Cu2+) cause serious environmental pollution and even endanger the health of organisms. Fluorescence chemosensing materials are widely used in the detection of metal ions due to their simple operation and high sensitivity. In this study, SiO2-encapsulated single perovskite quantum dot (PQD@SiO2) core-shell nanostructures which show strong, stable, and green fluorescence are synthesized and composited with gold nanoclusters (AuNCs) which show Cu2+-sensitive and red light-emitting fluorescence to obtain a visualized ratiometric fluorescence sensor (AuNCs/PQD@SiO2) for the detection of Cu2+. In the visualized detection of Cu2+, the green fluorescence emitted from the ion-insensitive PQD@SiO2 component is used as a reference signal and the red fluorescence emitted by ion-sensitive AuNC component is adopted as a sensing signal. In the presence of Cu2+, the red fluorescence is quenched whereas the green fluorescence remains stable, which results in a visualized fluorescence color change from orange-red to yellow and finally to green with increasing Cu2+ concentration. The significant change in the fluorescence color of AuNCs/PQD@SiO2 in response to Cu2+ enables a rapid, sensitive, and visualized detection of Cu2+. Further accurate and sensitive ratiometric fluorescence analysis of Cu2+ can be accomplished by measuring the ratio of fluorescence intensities at 643 and 520 nm (I643/I520) at a certain Cu2+ level. The developed AuNCs/PQD@SiO2-based sensor has been validated by its satisfactory application in the detection of Cu2+ in human serum and environmental water samples.


Subject(s)
Metal Nanoparticles , Nanocomposites , Quantum Dots , Calcium Compounds , Copper , Fluorescent Dyes , Gold , Humans , Ions , Oxides , Silicon Dioxide , Spectrometry, Fluorescence , Titanium
12.
Mikrochim Acta ; 188(11): 366, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34617126

ABSTRACT

Micro-sized glassy carbon microspheres (GCMs, typically 3 µm in diameter) instead of nano-sized gold nanoparticles (AuNPs, typically 20 nm in diameter) were for the first time used as signal markers for the quantitative detection of antigen such as prostate-specific antigen (PSA). After being treated with concentrated HNO3, GCMs bear carboxyl groups at their surfaces, which enables antibodies to be conjugated with GCMs to yield new type of micro-sized material-based colorimetric probes used for immunochromatographic test strips (ICTSs). The captured black GCMs (with strong and wide-band light absorption) on the T-line of ICTS were used both for qualitative and quantitative determination of PSA. In the case of quantitative determination, a lab-assembled optical strip reader system was used to measure the reflected LED light intensity at 550 nm. The sensing performances of the developed GCM-based ICTSs, such as sensitivity, selectivity, reproducibility, stability, and applicability, were investigated in detail. The developed GCM-based ICTSs can have much higher (3 times) detection sensitivity than AuNP-based ICTSs, showing promising applications in sensitive immunoassay.


Subject(s)
Prostate-Specific Antigen
13.
Anal Chem ; 93(7): 3618-3625, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33560834

ABSTRACT

In this research article, a novel and simple label-free electrochemiluminescence (ECL) immunosensor using cerium stannite (Ce2Sn2O7) nanocubes as brand-new ECL emitters has been suggested for the first time. Ce2Sn2O7 nanocubes prepared by a simple hydrothermal method displayed bright ECL emission, promising biocompatibility, low noxiousness, and perfect stability. On comparison of ECL and photoluminescence (PL) spectra, a surface-state mechanism was proposed to be involved in the ECL emission. After aminofunctionalization with 3-aminopropyltriethoxysilane (APTES), Ce2Sn2O7 could be decorated with gold nanoparticles through Au-NH2 covalent linkage, which yielded Au@Ce2Sn2O7 nanocomposites and further enhanced the ECL emission. To confirm the proposed immunosensor feasibility, carcinoembryonic antigen (CEA) was employed as an exemplary analyte. Based on the abovementioned points, our fabricated immunosensor improved the ECL performance to CEA concentrations in a linear range of 0.001-70 ng/mL with a low limit of detection of 0.53 pg/mL (S/N = 3). With outstanding stability, reproducibility, and specificity, this method is expected to be an innovative one for sensitive analyses of CEA and other biomarkers in real samples.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Carcinoembryonic Antigen , Electrochemical Techniques , Gold , Immunoassay , Limit of Detection , Luminescent Measurements , Reproducibility of Results
14.
Analyst ; 146(5): 1698-1704, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33459304

ABSTRACT

An ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the simultaneous determination of six glycosidic aroma precursors in pomelo, including geraniol ß-glucoside, geraniol ß-primeveroside, linalool ß-primeveroside, benzyl ß-primeveroside, 2-phenylethyl ß-primeveroside and nerolidol ß-primeveroside. The results showed that the proposed method has the advantages of rapidity, high sensitivity, and good accuracy. Six glycosidic aroma precursors were effectively separated in a short run time (13 min), and the limit of detection, limit of quantification, recovery, and repeatability of analytes were 0.321-4.47 ng mL-1, 1.07-14.9 ng mL-1, 94.4-109.1%, and 5.2-14.5%, respectively. The developed method was applied to analyze the contents of glycosidic aroma precursors in different organs of pomelo plant, including leaves, flowers and fruits. The analytical result showed that glycosidic aroma precursor contents in plant leaves, flowers and fruits were in the range of 0-5964.9 µg kg-1, and more glycosidic aroma precursors were found in flowers than in leaves or fruits. It is envisioned that the proposed UPLC-MS/MS method have promising application in qualifying and quantifying these six glycosidic aroma precursors in pomelo.


Subject(s)
Fruit , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Odorants
15.
Analyst ; 145(19): 6277-6282, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32940263

ABSTRACT

An enzyme-catalyzed fluorescence "switch" type sensor was constructed for the determination of alkaline phosphatase (ALP) activity by combining the fluorescence quenching effect of Ag+ on ultrathin g-C3N4 nanosheets (CNNSs) with the simple redox reaction of AA and Ag+. Briefly, Ag+ exhibits a significant quenching effect on the fluorescence of CNNSs. Thus the fluorescence signal of the CNNS-Ag+ system is extremely weak even in the presence of l-ascorbic acid-2-phosphate (AAP) ("off" state). When ALP coexists in the system, the enzyme can specifically catalyze the hydrolysis of AAP to form ascorbic acid (AA), which reduces Ag+ to Ag0. In this case, the fluorescence signal of the system is recovered ("on" state). Based on this principle, a signal-enhanced CNNS fluorescence sensor was developed to determine the activity of alkaline phosphatase. The experimental results show that the detection range of alkaline phosphatase is 0.5-20 U L-1, and the detection limit is 0.05 U L-1 (S/N = 3). Meanwhile, this method was used to assay ALP in serum samples.


Subject(s)
Alkaline Phosphatase , Biosensing Techniques , Catalysis , Nitriles
16.
Nanoscale ; 12(21): 11582-11592, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32432290

ABSTRACT

Biological photosynthesis via chloroplasts (CHs) is widely recognized as the most appropriate and effective method to convert solar energy and simultaneously supply nutrition to maintain life on earth. It is of great significance to prepare CH-based biohybrids which not only can artificially simulate the photocatalytic functionality of CH-containing plants and bacteria, but also can be easily prepared, stored for a long period and conveniently utilized when needed. In this work, for the first time, CHs were encapsulated into metal-organic frameworks (MOFs), namely zeolitic imidazolate frameworks (ZIF-8), under very gentle reaction conditions, i.e. in aqueous solution and at room temperature. Without the negative effects of organic solvents and high temperature on synthesis, the obtained CH@ZIF-8 biohybrids not only have shells maintaining the porous structure of ZIF-8, but also well preserve the biological activity of CHs inside. The porous ZIF-8 coating on CHs acts as a "cell wall" to allow mass and energy exchange between CHs and the environment, and protect CHs from microbiological degradation, which significantly prolong the lifetime of CHs in vitro (raised from several days to >300 days). The CH@ZIF-8 biohybrids may have promising applications in "living" artificial leaves and even artificial trees capable of photosynthesis in the future.


Subject(s)
Cell Wall/chemistry , Chloroplasts/chemistry , Metal-Organic Frameworks/chemistry , Biomimetic Materials/chemistry , Chloroplasts/metabolism , Fluorescence , Imidazoles/chemistry , Photosynthesis , Porosity , Solar Energy , Zeolites/chemistry
17.
ACS Appl Bio Mater ; 3(9): 6358-6367, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021766

ABSTRACT

Glassy carbon (GC) as a well-known electrode material has recently been proposed to consist of fullerene-like nanostructures. In order to verify the nanostructures in GC, find more physiochemical properties of GC, and develop sensors based on GC-related carbon nanomaterials, we investigated the morphologies and surface states of GC microspheres (GCMs) and their HNO3-oxidized products (ox-GCMs) with scanning electron microscopy (SEM), electrochemiluminescence (ECL), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron-paramagnetic resonance (EPR) spectroscopy. Our research results reveal that ox-GCMs rather than raw GCMs have abundant surface states, including many carboxyl groups (-COOH), surface defects (or carbon edges), and C-related dandling bonds. The surface states with a band gap of 2.14 eV endow ox-GCMs with strong cathodic ECL activity in the presence of peroxydisulfate (S2O82-). The ECL behaviors and maximum emission wavelength (580 nm) of ox-GCMs are very similar to those of small-sized graphene quantum dots and fullerene-like nanosheets, verifying that GCMs are essentially 3-D nanomaterials consisting of graphene or fullerene-like carbon nanostructures. It is for the first time that a microsized carbon material was reported to have good ECL activity in aqueous media. Possible mechanisms for surface state formation and ECL reactions are proposed for ox-GCMs, and a promising application of ox-GCMs in ECL immunosensing has been demonstrated by determining prostate specific antigen (PSA) as a model cancer biomarker.

18.
Anal Chim Acta ; 1091: 112-118, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31679564

ABSTRACT

The fabrication of nanomaterials-based sensing platform has attracted a great deal of interest due to their unique properties. Here, we report a novel hybrid platform of g-C3N4 nanosheets/DNA-stabilized Ag nanoclusters (CNNS/AgNCs) for sensing application. In this platform, the fluorescent AgNCs was synthesized using a pair of double-functional ssDNA sequence as a template, including the aptamer segment against thrombin and C-rich segment for AgNCs. Next, the interaction between the fluorescent Apt-AgNCs and CNNS was investigated. It is verified that DNA-stabilized AgNCs could absorb on the CNNS surface via the stronger π-π interaction to form the hybrid platform, whose fluorescence is quenched by CNNS through the photoelectron transfer effect (PET). When targets are introduced into the system, target/Apt-AgNCs complex will fall off from the CNNS surface, resulting in the fluorescence recovery. This hybrid platform can achieve the detection of biomolecule with high sensitivity and selectivity. Considering the fluorescence variability of DNA scaffold AgNCs, this hybrid platform is promising to extend to other target and even multi-target detection.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Graphite/chemistry , Metal Nanoparticles/chemistry , Nitrogen Compounds/chemistry , Spectrometry, Fluorescence/methods , Thrombin/analysis , Base Sequence , DNA/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Silver/chemistry , Thrombin/chemistry
19.
20.
Nanoscale ; 11(25): 12132-12138, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31198922

ABSTRACT

Chemically and electrochemically stable conducting films are very desirable in the electrochemical industry and electrochemical sensing. In this work, ethanol was used as the carbon source to synthesize a multilayer-graphene nanosheet (MLGNS) film on ceramic substrates by a catalyst-free chemical vapor deposition (CVD) method at 900 °C and under ambient pressure. The developed CVD method is simple, economical and safe and avoids damage to the graphene nanosheet film during its transfer from the metal substrate to the non-metal substrate. The synthesized MLGNS film was well characterized by various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The prepared MLGNS film has good chemical and electrochemical stability and satisfactory electrical conductivity thus can be used as a new type of electrode material. The MLGNS film on the ceramic substrate has been fabricated into an electrochemiluminescence (ECL) imaging platform to investigate the oxygen reduction reaction (ORR) and evaluate the activities of ORR catalysts, such as PtNPs. The established MLGNS film-based ECL imaging platform may have promising applications in the study of catalysts for fuel cells, high throughput immunoassay in the clinic, and fast screening of anti-cancer drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...