Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 129: 202-212, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36804236

ABSTRACT

The excessive accumulation of potentially toxic metals (Pb and Cd) in coastal wetlands is among the main factors threatening wetland ecosystems. However, the effects of water table depth (WTD) on the risk and binding mechanisms of potentially toxic metals in sediments remain unclear. Here, sediments from different WTD obtained from a typical coastal wetland were evaluated using a newly developed strategy based on chemical extraction methods coupled with high-resolution spectroscopy. Our findings indicated that the WTD of the coastal wetland fluctuates frequently and the average enrichment factor for Pb was categorized as minor, whereas Cd enrichment was categorized as moderate. High-resolution spectroscopy techniques also demonstrated that organic functional groups and partly inorganic compounds (e.g., Fe-O/Si-O) played a vital role in the binding of Pb and Cd to surface sediments. Additionally, mineral components rather than organic groups were mainly bound to these metals in the bottom sediments. Collectively, our findings provide key insights into the potential health effects and binding characteristics of potentially toxic metals in sediments, as well as their dynamic behavior under varying sediment depths at a microscale.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Wetlands , Ecosystem , Metals, Heavy/analysis , Cadmium , Water , Lead , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Risk Assessment
2.
Environ Sci Technol ; 56(12): 8132-8141, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35561278

ABSTRACT

Fungal-mineral interactions can effectively alleviate cellular stress from organic pollutants, the production of which are expected to rapidly increase owing to the Earth moving into an unprecedented geological epoch, the Anthropocene. The underlying mechanisms that may enable fungi to combat organic pollution during fungal-mineral interactions remain unclear. Inspired by the natural fungal sporulation process, we demonstrate for the first time that fungal biomineralization triggers the formation of an ultrathin (hundreds of nanometers thick) exoskeleton, enriched in nanosized iron (oxyhydr)oxides and biomolecules, on the hyphae. Mapped biochemical composition of this coating at a subcellular scale via high spatial resolution (down to 50 nm) synchrotron radiation-based techniques confirmed aromatic C, C-N bonds, amide carbonyl, and iron (oxyhydr)oxides as the major components of the coatings. This nanobiohybrid system appeared to impart a strong (×2) biofunctionality for fungal degradation of bisphenol A through altering molecular-level trade-offs between lattice oxygen and oxygen vacancy. Together, fungal coatings could act as "artificial spores", which enable fungi to combat physical and chemical stresses in natural environments, providing crucial insights into fungal biomineralization and coevolution of the Earth's lithosphere and biosphere.


Subject(s)
Environmental Pollutants , Exoskeleton Device , Iron , Minerals/chemistry , Oxides/chemistry , Oxygen
3.
Environ Sci Technol ; 56(1): 672-680, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34905360

ABSTRACT

Fungal-mediated extracellular reactive oxygen species (ROS) are essential for biogeochemical cycles of carbon, nitrogen, and contaminants in terrestrial environments. These ROS levels may be modulated by iron nanoparticles that possess intrinsic peroxidase (POD)-like activity (nanozymes). However, it remains largely undescribed how fungi modulate the POD-like activity of the iron nanoparticles with various crystallinities and crystal facets. Using well-controlled fungal-mineral cultivation experiments, here, we showed that fungi possessed a robust defect engineering strategy to modulate the POD-like activity of the attached iron minerals by decreasing the catalytic activity of poorly ordered ferrihydrite but enhancing that of well-crystallized hematite. The dynamics of POD-like activity were found to reside in molecular trade-offs between lattice oxygen and oxygen vacancies in the iron nanoparticles, which may be located in a cytoprotective fungal exoskeleton. Together, our findings unveil coupled POD-like activity and oxygen redox dynamics during fungal-mineral interactions, which increase the understanding of the catalytic mechanisms of POD-like nanozymes and microbial-mediated biogeochemical cycles of nutrient elements as well as the attenuation of contaminants in terrestrial environments.


Subject(s)
Iron , Nanoparticles , Fungi , Minerals , Nanoparticles/chemistry , Nutrients , Peroxidases
4.
Sci Total Environ ; 772: 145059, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33770883

ABSTRACT

Oxygenation of the reduced species has been regarded as the major source for hydroxyl radical (HO) generation in aquatic environments. Yet, the O2-induced formation of HO in lake sediments during the flooding/drought transformation process remained largely unexplored. In this study, two types of sediments from Wucheng (WC) and Nanji (NJ) area in Lake Poyang, China, were collected, respectively, with the burst of HO derived by flooding/drought transformation process exploring via the incubation experiments. Results showed that no obvious HO can be detected for the two sediments during the flooding period, while the concentrations of HO increased rapidly for the flooding/drought transformation process due to the enhanced dissolved oxygen contents. The highest concentrations of HO in the surface sediment were 2.45 ± 0.19 µmol kg-1 for WC sediment and 0.69 ± 0.25 µmol kg-1 for NJ sediment, showing higher burst potential of HO for the former. The contents of Fe(II) in the surface sediments for WC area (589.3 ± 37.29 mg kg-1) were about two times higher than those for NJ area (308.4 ± 94.01 mg kg-1) during the flooding period. Oxygenation of the surface Fe(II) contributed significantly to the burst of HO in the flooding/drought transformation process. Moreover, the higher percentage of humic-like substances in WC sediment indicated that the dissolved humic fraction exhibited also important role in the HO formation due to electrons transfer under redox conditions. This study highlighted the importance of reactive reduced species in manipulating the burst of HO in lake sediment, which is essential for understanding the geochemical cycling of several major and trace elements as well as the behavior and fate of the contaminants in aquatic ecosystems.

5.
Environ Microbiol ; 23(2): 893-907, 2021 02.
Article in English | MEDLINE | ID: mdl-32783346

ABSTRACT

Fungal-mineral interactions can produce large amounts of biogenic nano-size (~ 1-100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal-mineral cultivation exhibit intrinsic peroxidase-like activity. Specifically, the average peroxidase-like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X-ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non-lattice oxygen, through occupying surface oxygen-vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox-active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 µm) oxygen-film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation-based micro-FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal-mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.


Subject(s)
Bacterial Proteins/metabolism , Ferrosoferric Oxide/metabolism , Hypocreales/growth & development , Hypocreales/metabolism , Peroxidases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ecosystem , Ferrosoferric Oxide/chemistry , Hypocreales/chemistry , Hypocreales/genetics , Magnetite Nanoparticles/chemistry , Minerals/chemistry , Oxidation-Reduction , Peroxidases/chemistry , Peroxidases/genetics , Spectroscopy, Fourier Transform Infrared
6.
Curr Biol ; 30(15): 2943-2950.e4, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32531287

ABSTRACT

Microbe-mineral interactions have shaped the surface of the Earth and impacted the evolution of plants and animals. Although more than two-thirds of known mineral species have biological imprints, how the biotransformation of minerals may have benefited microbial development, beyond nutritional and energetic use, remains enigmatic. In this research, we have shown that biogenic ferrihydrite nanoparticles are extensively formed at the interface between an actively growing fungus and an iron-containing mineral, hematite. These biogenic nanoparticles formed through the fungus-hematite interactions can behave as mimetic catalysts, similar to nanozymes that imitate peroxidase, which scavenges hydrogen peroxide for the mitigation of potential cytotoxicity. Evidence from various X-ray spectroscopic analyses indicated that non-lattice oxygen in the nanomaterials was chiefly responsible for this catalytic activity, rather than through the conventional mechanisms of iron redox chemistry. Cryo-scanning electron microscopy, high-resolution (∼30 nm) 3D volume rendering, and biomass analyses further confirmed that the organism was active and capable of mediating the catalytic reactions. We therefore hypothesize that this confers an advantage to the organism in terms of protection from oxidative stress and ensuring the acquisition of essential iron. This work raises new questions about the roles of biogenic nanomaterials in the coevolution of the lithosphere and biosphere and provides a step toward understanding the feedback pathways controlling the evolution of biogenic mineral formation.


Subject(s)
Ferric Compounds/metabolism , Fungi/metabolism , Iron/metabolism , Nanoparticles/metabolism , Oxidative Stress/physiology , Biotransformation , Catalysis , Oxidation-Reduction , Oxygen , Peroxidase
7.
Environ Pollut ; 223: 457-465, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28118997

ABSTRACT

Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29Si nuclear magnetic resonance (NMR), 27Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils.


Subject(s)
Copper/analysis , Copper/chemistry , Environmental Monitoring/instrumentation , Fertilizers/analysis , Manure/analysis , Soil/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Synchrotrons , Aluminum Silicates/chemistry , Animals , Carbon/chemistry , Clay , Environmental Monitoring/methods , Humic Substances/analysis , Hydrogen-Ion Concentration , Oxides/analysis , Oxides/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...