Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(27): 19123-19135, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29721188

ABSTRACT

Hypoxia-inducible factors (HIFs) facilitate cellular adaptation to environmental stress such as low oxygen conditions (hypoxia) and consequently promote tumor growth. While HIF-1α functions in cancer progression have been increasingly recognized, the contribution of HIF-2α remains widely unclear despite accumulating reports showing its overexpression in cancer cells. Here, we report that HIF-2α up-regulates the expression of CD70, a cancer-related surface antigen that improves anchorage-independent growth in cancer cells and is associated with poor clinical prognosis, which can be induced via epigenetic modifications mediated by DNMT1. The ablation of CD70 by RNAi led to decreased colony forming efficiency in soft agar. Most strikingly, we identified the emergence of CD70-expressing cells derived from CD70-negative cell lines upon prolonged hypoxia exposure or DNMT1 inhibition, both of which significantly reduced CpG-nucleotide methylations within CD70 promoter region. Interestingly, DNMT1 expression was decreased under hypoxia, which was rescued by HIF-2α knockdown. In addition, the expression of CD70 and colony forming efficiency in soft agar were decreased by knockdown of HIF-2α. These findings indicate that CD70 expression and an aggressive phenotype of cancer cells is driven under hypoxic conditions and mediated by HIF-2α functions and epigenetic modifications. This provides additional insights into the role of HIF-2α in coordinated regulation of stem-like functions and epigenetics that are important for cancer progression and may present additional targets for the development of novel combinatorial therapeutics.

2.
J Vis Exp ; (130)2017 12 07.
Article in English | MEDLINE | ID: mdl-29286399

ABSTRACT

The wound-healing assay is efficient and one of the most economical ways to study cell migration in vitro. Conventionally, images are taken at the beginning and end of an experiment using a phase-contrast microscope, and the migration abilities of cells are evaluated by the closure of wounds. However, cell movement is a dynamic phenomenon, and a conventional method does not allow for tracking single-cell movement. To improve current wound-healing assays, we use live-cell imaging techniques to monitor cell migration in real time. This method allows us to determine the cell migration rate based on a cell tracking system and provides a clearer distinction between cell migration and cell proliferation. Here, we demonstrate the use of live-cell imaging in wound-healing assays to study the different migration abilities of breast epithelial cells influenced by the presence of TIP60. As cell motility is highly dynamic, our method provides more insights into the processes of wound healing than a snapshot of wound closure taken with the traditional imaging techniques used for wound-healing assays.


Subject(s)
Breast/cytology , Breast/diagnostic imaging , Cell Movement/physiology , Lysine Acetyltransferase 5/deficiency , Cell Proliferation/physiology , Epithelial Cells/cytology , Female , Humans , Lysine Acetyltransferase 5/genetics , Lysine Acetyltransferase 5/metabolism , Wound Healing
3.
Sci Rep ; 7(1): 4108, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28642487

ABSTRACT

Adaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood. To identify and quantify hypoxia-induced alternative splicing events in human cancer cells, we performed whole transcriptome RNA-Seq in breast cancer cells that are known to provide robust transcriptional response to hypoxia. We found 2005 and 1684 alternative splicing events including intron retention, exon skipping and alternative first exon usage that were regulated by acute and chronic hypoxia where intron retention was the most dominant type of hypoxia-induced alternative splicing. Many of these genes are involved in cellular metabolism, transcriptional regulation, actin cytoskeleton organisation, cancer cell proliferation, migration and invasion, suggesting they may modulate or be involved in additional features of tumorigenic development that extend beyond the known functions of canonical full-length transcripts.


Subject(s)
Alternative Splicing , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Exons , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Profiling , Humans , Hypoxia/metabolism , Introns , Membrane Proteins/metabolism , NF-E2-Related Factor 1/metabolism , Neoplasm Proteins/metabolism , RNA Processing, Post-Transcriptional , Transcription Factors/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...