Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501566

ABSTRACT

Intrinsically conducting polymers (ICPs) have been widely studied in various applications, such as sensors, tissue engineering, drug delivery, and semiconductors. Specifically, polyaniline (PANI) stands out in food industry applications due to its advantageous reversible redox properties, electrical conductivity, and simple modification. The rising concerns about food safety and security have encouraged the development of PANI as an antioxidant, antimicrobial agent, food freshness indicator, and electronic nose. At the same time, it plays an important role in food safety control to ensure the quality of food. This study reviews the emerging applications of PANI in the food industry. It has been found that the versatile applications of PANI allow the advancement of modern active and intelligent food packaging and better food quality monitoring systems.

2.
Polymers (Basel) ; 14(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335452

ABSTRACT

The use of petroleum-based plastics in food packaging leads to various environmental impacts, while spoilage of food and misinterpretation of food-date labelling account for food insecurity; therefore, a biopolymer capable of indicating food edibility is prepared to resolve these issues. In this research, starch/polyaniline (starch/PANI) biopolymer film was synthesised and investigated as an ammonia sensor for potential application as intelligent food packaging. FT-IR and XRD were used to confirm the composition of the biopolymer films, while UV-Vis spectrometry was applied to identify the oxidation state of PANI in emeraldine form. PANI was successfully incorporated into the starch matrix, leading to better thermal stability (TGA) but decreasing the crystallinity of the matrix (DSC). The performance of the polymer-film sensor was determined through ammonia-vapour sensitivity analysis. An obvious colour change from green to blue of starch/PANI films was observed upon exposure to the ammonia vapour. Starch/PANI 0.4% is the optimum composition, having the best sensor performance with good linearity (R2 = 0.9459) and precision (RSD = 8.72%), and exhibiting excellent LOD (245 ppm). Furthermore, the starch/PANI films are only selective to ammonia. Therefore, the starch/PANI films can be potentially applied as colourimetric ammonia sensors for intelligent food packaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...