Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncolytics ; 30: 153-166, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37674627

ABSTRACT

Phosphatase of regenerating liver 3 (PRL3) is a specific tumor antigen overexpressed in a broad range of adult cancer types. However, its physiological expression in pediatric embryonal and mesenchymal tumors and its association with clinical outcomes in children is unknown. We sought to profile the expression of PRL3 in pediatric tumors in relation to survival outcomes, expression of angiogenesis markers, and G-protein-coupled receptor (GPCR)-mitogen-activated protein kinase (MAPK) signaling targets. PRL3-zumab, a first-in-class humanized antibody, was administered in a dose escalation schedule in a first-in-child clinical trial to study toxicity, pharmacokinetics, and clinical outcomes. Among 64 pediatric tumors, PRL3 was most frequently expressed in neuroblastoma (100%), rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcomas (71%), and renal sarcomas (60%) but absent in paired normal tissues. PRL3 was expressed in 75% of relapsed tumors and associated with shorter median event-free survival. Microarray profiling of PRL3-positive tumors showed elevation of angiogenin, TIMP1 and TIMP2, and GPCR-MAPK signaling proteins that commonly interacted with PRL3. The first use of PRL3-zumab in a pediatric patient saw no adverse events. A 28.6% reduction in maximum target lesion diameter was achieved when PRL3-zumab was administered concurrently with hypofractionated radiation. These findings support wider exploration of PRL3 expression in embryonal and mesenchymal tumors and further clinical application of PRL3-zumab in pediatric patients.

2.
Theranostics ; 13(6): 1876-1891, 2023.
Article in English | MEDLINE | ID: mdl-37064866

ABSTRACT

Phosphatase of Regenerating Liver-3 (PRL3) was discovered in 1998 and was subsequently found to be correlated with cancer progression and metastasis in 2001. Extensive research in the past two decades has produced significant findings on PRL3-mediated cancer signaling and functions, as well as its clinical relevance in diverse types of cancer. PRL3 has been established to play a role in many cancer-related functions, including but not limited to metastasis, proliferation, and angiogenesis. Importantly, the tumor-specific expression of PRL3 protein in multiple cancer types has made it an attractive therapeutic target. Much effort has been made in developing PRL3-targeted therapy with small chemical inhibitors against intracellular PRL3, and notably, the development of PRL3-zumab as a novel cancer immunotherapy against PRL3. In this review, we summarize the current understanding of the role of PRL3 in cancer-related cellular functions, its prognostic value, as well as perspectives on PRL3 as a target for unconventional immunotherapy in the clinic with PRL3-zumab.


Subject(s)
Neoplasms , Signal Transduction , Cell Line, Tumor , Immunotherapy , Gene Expression Regulation, Neoplastic , Neoplasms/therapy
3.
iScience ; 26(2): 106064, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824282

ABSTRACT

In the absence of targetable hormonal axes, chemoresistance for triple-negative breast cancer (TNBC) often compromises patient outcomes. To investigate the underlying tumor dynamics, we performed trajectory analysis on the single-nuclei RNA-seq (snRNA-seq) of chemoresistant tumor clones during neoadjuvant chemotherapy (NAC). It revealed a common tumor trajectory across multiple patients with HER2-like expansions during NAC. Genome-wide CRISPR-Cas9 knock-out on mammary epithelial cells revealed chemosensitivity-promoting knock-outs were up-regulated along the tumor trajectory. Furthermore, we derived a consensus gene signature of TNBC chemoresistance by comparing the trajectory transcriptome with chemoresistant transcriptomes from TNBC cell lines and poor prognosis patient samples to predict FDA-approved drugs, including afatinib (pan-HER inhibitor), targeting the consensus signature. We validated the synergistic efficacy of afatinib and paclitaxel in chemoresistant TNBC cells and confirmed pharmacological suppression of the consensus signature. The study provides a dynamic model of chemoresistant tumor transcriptome, and computational framework for pharmacological intervention.

4.
Nat Cancer ; 4(2): 257-275, 2023 02.
Article in English | MEDLINE | ID: mdl-36585452

ABSTRACT

Inhibiting individual histone deacetylase (HDAC) is emerging as well-tolerated anticancer strategy compared with pan-HDAC inhibitors. Through preclinical studies, we demonstrated that the sensitivity to the leading HDAC6 inhibitor (HDAC6i) ricolinstat can be predicted by a computational network-based algorithm (HDAC6 score). Analysis of ~3,000 human breast cancers (BCs) showed that ~30% of them could benefice from HDAC6i therapy. Thus, we designed a phase 1b dose-escalation clinical trial to evaluate the activity of ricolinostat plus nab-paclitaxel in patients with metastatic BC (MBC) (NCT02632071). Study results showed that the two agents can be safely combined, that clinical activity is identified in patients with HR+/HER2- disease and that the HDAC6 score has potential as predictive biomarker. Analysis of other tumor types also identified multiple cohorts with predicted sensitivity to HDAC6i's. Mechanistically, we have linked the anticancer activity of HDAC6i's to their ability to induce c-Myc hyperacetylation (ac-K148) promoting its proteasome-mediated degradation in sensitive cancer cells.


Subject(s)
Breast Neoplasms , Humans , Female , Histone Deacetylase 6/metabolism , Breast Neoplasms/drug therapy , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...