Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Microbiol Infect Dis ; 108(2): 116162, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113673

ABSTRACT

An adult periodontitis patient treated with mechanical/surgical therapy experienced gingival necrosis and granulomas post-treatment. Aggregatibacter actinomycetemcomitans, a tissue-invasive pathogen, was recovered and multidrug-resistant but susceptible to ciprofloxacin. Systemic ciprofloxacin eliminated A. actinomycetemcomitans with marked clinical improvement. Ciprofloxacin may be prescribed for A. actinomycetemcomitans periodontal infection unresponsive to the common amoxicillin-metronidazole treatment.


Subject(s)
Anti-Bacterial Agents , Periodontitis , Adult , Humans , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , Aggregatibacter actinomycetemcomitans , Periodontal Pocket , Periodontitis/drug therapy , Metronidazole
2.
Front Microbiol ; 13: 1031029, 2022.
Article in English | MEDLINE | ID: mdl-36406462

ABSTRACT

Modeling subgingival microbiome in health and disease is key to identifying the drivers of dysbiosis and to studying microbiome modulation. Here, we optimize growth conditions of our previously described in vitro subgingival microbiome model. Subgingival plaque samples from healthy and periodontitis subjects were used as inocula to grow normobiotic and dysbiotic microbiomes in MBEC assay plates. Saliva supplemented with 1%, 2%, 3.5%, or 5% (v/v) heat-inactivated human serum was used as a growth medium under shaking or non-shaking conditions. The microbiomes were harvested at 4, 7, 10 or 13 days of growth (384 microbiomes in total) and analyzed by 16S rRNA gene sequencing. Biomass significantly increased as a function of serum concentration and incubation period. Independent of growth conditions, the health- and periodontitis-derived microbiomes clustered separately with their respective inocula. Species richness/diversity slightly increased with time but was adversely affected by higher serum concentrations especially in the periodontitis-derived microbiomes. Microbial dysbiosis increased with time and serum concentration. Porphyromonas and Alloprevotella were substantially enriched in higher serum concentrations at the expense of Streptococcus, Fusobacterium and Prevotella. An increase in Porphyromonas, Bacteroides and Mogibacterium accompanied by a decrease in Prevotella, Catonella, and Gemella were the most prominent changes over time. Shaking had only minor effects. Overall, the health-derived microbiomes grown for 4 days in 1% serum, and periodontitis-derived microbiomes grown for 7 days in 3.5%-5% serum were the most similar to the respective inocula. In conclusion, normobiotic and dysbiostic subgingival microbiomes can be grown reproducibly in saliva supplemented with serum, but time and serum concentration need to be adjusted differently for the health and periodontitis-derived microbiomes to maximize similarity to in vivo inocula. The optimized model could be used to identify drivers of dysbiosis, and to evaluate interventions such as microbiome modulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...