Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 9(3): 5665-72, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23099302

ABSTRACT

The capability of core/sheath nanofibers prepared using coaxial electrospinning to provide adjustable biphasic drug release was investigated. Using ketoprofen (KET) as the model drug, polyvinylpyrrolidone as the sheath polymer, and ethyl cellulose as the core matrix, the coaxial process could be conducted smoothly and continuously without spinneret clogging. Scanning electron microscopy and transmission electron microscopy revealed linear nanofibers with homogeneous and clear core/sheath structures. Differential scanning calorimetry and X-ray diffraction verified that the core/sheath nanofibers were nanocomposites, with the drug present in the polymer matrix in an amorphous state. Attenuated total reflectance-Fourier transform infrared spectra demonstrated that the sheath polymer and core matrix were compatible with KET owing to hydrogen bonding. In vitro dissolution tests showed that the core/sheath nanofibers could provide typical biphasic drug release profiles consisting of an immediate and sustained release. The amount of drug released in the first phase was tailored by adjusting the sheath flow rate, and the remaining drug released in the second phase was controlled by a typical diffusion mechanism. The present study shows a simple and useful approach for the systematic design and fabrication of novel biomaterials with structural characteristics for providing complicated and programmed drug release profiles using coaxial electrospinning.


Subject(s)
Cellulose/analogs & derivatives , Ketoprofen/pharmacology , Nanofibers/chemistry , Povidone/chemistry , Tissue Engineering , Calorimetry, Differential Scanning , Cellulose/chemistry , Nanofibers/ultrastructure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...