Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Biol Res ; 57(1): 23, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705984

ABSTRACT

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Subject(s)
Anxiety , Brain-Gut Axis , Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Anxiety/microbiology , Brain-Gut Axis/physiology , Rats , Rats, Sprague-Dawley , Obesity/microbiology , Obesity/psychology , Obesity/metabolism , Signal Transduction/physiology , Behavior, Animal/physiology
2.
Behav Brain Res ; 470: 115048, 2024 07 26.
Article in English | MEDLINE | ID: mdl-38761857

ABSTRACT

BACKGROUND: Obesity is a worldwide public health problem associated with cognitive and mental health problems in both humans and rats. Studies assessing the effect of fiber supplementation on behavioral deficits and oxidative stress caused by high-fat diet (HFD) consumption in female rats are still scarce. We hypothesized that HFD consumption would lead to anxiety-related behavior and hepatic oxidative stress and that inulin would protect against these changes. We analyzed the impact of HFD-induced obesity combined with fiber supplementation (inulin) on anxiety-related defensive behavior and hepatic oxidative stress. RESULTS: Female rats were fed a high-fat diet (HFD; 45%) for nine weeks to induce obesity. The administration of inulin was found to decrease the adiposity index in both the control and obese groups. The consumption of a HFD combined with inulin supplementation resulted in a reduction in both CAT activity and carbonylated protein levels, leading to a shift in the hepatic redox balance. Interestingly, the behavioral data were conflicting. Specifically, animals that consumed a high-fat diet and received inulin showed signs of impaired learning and memory caused by obesity. The HFD did not impact anxiety-related behaviors in the female rats. However, inulin appears to have an anxiolytic effect, in the ETM, when associated with the HFD. On the other hand, inulin appears to have affected the locomotor activity in the HFD in both open field and light-dark box. CONCLUSION: Our results show that consumption of a HFD induced obesity in female rats, similar to males. However, HFD consumption did not cause a consistent increase in anxiety-related behaviors in female Wistar rats. Treatment with inulin at the dosage used did not exert consistent changes on the behavior of the animals, but attenuated the abdominal WAT expansion and the hepatic redox imbalance elicited by high-fat diet-induced obesity.


Subject(s)
Anxiety , Diet, High-Fat , Inulin , Liver , Obesity , Oxidative Stress , Rats, Wistar , Animals , Female , Inulin/pharmacology , Inulin/administration & dosage , Diet, High-Fat/adverse effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Liver/metabolism , Liver/drug effects , Anxiety/metabolism , Obesity/metabolism , Rats , Dietary Supplements , Dietary Fiber/pharmacology , Dietary Fiber/administration & dosage , Behavior, Animal/drug effects , Behavior, Animal/physiology , Disease Models, Animal
3.
Life Sci ; 346: 122636, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614307

ABSTRACT

Malnutrition results in autonomic imbalance and heart hypertrophy. Overexpression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in the left ventricles (LV) is linked to hypertrophied hearts and abnormal myocardium automaticity. Given that ivabradine (IVA) has emerging pleiotropic effects, in addition to the widely known bradycardic response, this study evaluated if IVA treatment could repair the autonomic control and cardiac damages in malnourished rats. AIM: Assess the impact of IVA on tonic cardiovascular autonomic control and its relationship with hemodynamics regulation, LV inflammation, and HCN gene expression in post-weaning protein malnutrition condition. MAIN METHODS: After weaning, male rats were divided into control (CG; 22 % protein) and malnourished (MG; 6 % protein) groups. At 35 days, groups were subdivided into CG-PBS, CG-IVA, MG-PBS and MG-IVA (PBS 1 ml/kg or IVA 1 mg/kg) received during 8 days. We performed jugular vein cannulation and electrode implant for drug delivery and ECG registration to assess tonic cardiovascular autonomic control; femoral cannulation for blood pressure (BP) and heart rate (HR) assessment; and LV collection to evaluate ventricular remodeling and HCN gene expression investigation. KEY FINDINGS: Malnutrition induced BP and HR increases, sympathetic system dominance, and LV remodeling without affecting HCN gene expression. IVA reversed the cardiovascular autonomic imbalance; prevented hypertension and tachycardia; and inhibited the LV inflammatory process and fiber thickening caused by malnutrition. SIGNIFICANCE: Our findings suggest that ivabradine protects against malnutrition-mediated cardiovascular damage. Moreover, our results propose these effects were not attributed to HCN expression changes, but rather to IVA pleiotropic effects on autonomic control and inflammation.


Subject(s)
Autonomic Nervous System , Heart Rate , Hypertension , Ivabradine , Rats, Wistar , Tachycardia , Animals , Ivabradine/pharmacology , Male , Rats , Tachycardia/drug therapy , Tachycardia/physiopathology , Hypertension/drug therapy , Hypertension/physiopathology , Heart Rate/drug effects , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Inflammation/metabolism , Inflammation/drug therapy , Weaning , Blood Pressure/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Malnutrition/drug therapy , Protein-Energy Malnutrition/drug therapy , Protein-Energy Malnutrition/physiopathology , Protein-Energy Malnutrition/complications , Heart Ventricles/drug effects , Heart Ventricles/physiopathology , Ventricular Remodeling/drug effects
4.
Biol. Res ; 572024.
Article in English | LILACS-Express | LILACS | ID: biblio-1564038

ABSTRACT

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.

5.
Physiol Behav ; 266: 114181, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37019294

ABSTRACT

Obesity and stress are related to cardiovascular diseases. Rats fed a high-fat diet (HFD) show increased cardiovascular reactivity to emotional stress and altered defensive behavioral responses. Indeed, changes in thermoregulatory responses in an aversive environment are observed in these animals. However, studies aimed at clarifying the physiological mechanisms linking obesity, stress hyperreactivity and behavioral changes are needed. The aim of this study was to evaluate the changes in thermoregulatory responses, heart rate, and the susceptibility to anxiety in obese animals subjected to stress. Nine-week high-fat diet protocol was effective in inducing obesity by increasing weight gain, fat mass, adiposity index, white epididymal, retroperitoneal, inguinal and brown adipose tissue. Animals induced to obesity and subjected to stress (HFDS group) by the intruder animal method showed increases in heart rate (HR), core body temperature and tail temperature. HFDS showed an increase in the first exposure to the closed arm (anxiety-like behavior) in elevated T-Maze (ETM). The groups did not differ with respect to panic behavior assessed in the ETM and locomotor activity in the open field test. Our study shows that HFDS animals presented increased reactivity to stress with higher stress hyperthermia and anxious behavior. Thus, our results present relevant information regarding stress responsiveness and behavioral changes in obese animals.


Subject(s)
Anxiety , Obesity , Rats , Animals , Heart Rate , Rats, Wistar , Obesity/psychology , Anxiety Disorders , Weight Gain , Diet, High-Fat/adverse effects
6.
Life Sci ; 276: 119423, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33785344

ABSTRACT

In clinical and laboratory practice, the use of anesthetics is essential in order to perform surgeries. Anesthetics, besides causing sedation and muscle relaxation, promote several physiological outcomes, such as psychotomimetic alterations, increased heart rate, and blood pressure. However, studies depicting the behavioral effect induced by ketamine and isoflurane are conflicting. In the present study, we assessed the behavioral effects precipitated by ketamine and isoflurane administration. We have also evaluated the ketamine effect on cell cytotoxicity and viability in an amygdalar neuronal primary cell culture. Ketamine (80 mg/kg) caused an anxiogenic effect in rats exposed to the elevated T-maze test (ETM) 2 and 7 days after ketamine administration. Ketamine (40 and 80 mg/kg) administration also decreased panic-like behavior in the ETM. In the light/dark test, ketamine had an anxiogenic effect. Isoflurane did not change animal behavior on the ETM. Neither ketamine nor isoflurane changed the spontaneous locomotor activity in the open field test. However, isoflurane-treated animals explored less frequently the OF central area seven days after treatment. Neither anesthetic caused oxidative damage in the liver. Ketamine also reduced cellular metabolism and led to neuronal death in amygdalar primary cell cultures. Thus, our work provides evidence that ketamine and isoflurane induce pronounced long lasting anxiety-related behaviors in male rats.


Subject(s)
Anxiety Disorders/drug therapy , Behavior, Animal/drug effects , Isoflurane/pharmacology , Ketamine/pharmacology , Neurons/drug effects , Panic Disorder/drug therapy , Anesthetics, Dissociative/administration & dosage , Anesthetics, Dissociative/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Animals , Anxiety Disorders/pathology , Anxiety Disorders/psychology , Isoflurane/administration & dosage , Ketamine/administration & dosage , Male , Maze Learning , Neurons/pathology , Panic Disorder/pathology , Panic Disorder/psychology , Rats , Rats, Wistar
7.
Sci Rep ; 8(1): 4943, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563583

ABSTRACT

Smokers, who generally present with lung damage, are more anxious than non-smokers and have an associated augmented risk of panic. Considering that lung damage signals specific neural pathways that are related to affective responses, the aim of the present study was to evaluate the influence of pulmonary injury on anxiety and panic-like behaviours in animals exposed to cigarette smoke with and without tobacco. Male Wistar rats were divided into the following groups: a control group (CG); a regular cigarette group (RC); and a tobacco-free cigarette (TFC) group. Animals were exposed to twelve cigarettes per day for eight consecutive days. The animals were then exposed to an elevated T-maze and an open field. The RC and TFC groups presented increases in inflammatory cell inflow, antioxidant enzyme activity, and TBARS levels, and a decrease in the GSH/GSSG ratio was observed in the TFC group. Exposure to RC smoke reduced anxiety and panic-related behaviours. On the other hand, TFC induced anxiety and panic-related behaviours. Thus, our results contradict the concept that nicotine is solely accountable for shifted behavioural patterns caused by smoking, in that exposure to TFC smoke causes anxiety and panic-related behaviours.


Subject(s)
Anxiety , Behavior, Animal/drug effects , Maze Learning/drug effects , Panic/drug effects , Tobacco Smoke Pollution/adverse effects , Animals , Anxiety/chemically induced , Anxiety/physiopathology , Male , Rats , Rats, Wistar
8.
Int. J. Pept. Res. Ther. ; 23: 381-385, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15039

ABSTRACT

Proline-rich oligopeptides from Bothrops jararaca (Bj-PROs) produce potent and long-lasting antihypertensive effect through mechanisms that go beyond ACE inhibition. In this study we evaluated the renal function parameters of spontaneously hypertensive rats (SHR) injected with Bj-PRO-5a and -10c (0.47, 71 or 710 nmol/kg) found in the CNP-precursor of the snake. At 71 and 710 nmol/kg, Bj-PROs increased urinary flow rate (18.1-43.5%). At 71 nmol/kg, Bj-PRO 5a and 10c elevated sodium excretion (68.1 and 40.9%, respectively) and Bj-PRO-5a also increased urinary sodium/creatinine ratio (56.5%). At 0.47 nmol/kg, Bj-PROs did not change renal function. All doses of Bj-PROs reduced blood pressure (Delta = -13 to -24mmHg). We conclude that Bj-PROs reduce blood pressure and improve renal function of SHRs through diuretic and natriuretic mechanisms.

9.
Biol. Res ; 45(4): 337-343, 2012. ilus
Article in English | LILACS | ID: lil-668683

ABSTRACT

Post-weaning protein malnutrition is often related to the development of cardiovascular and metabolic diseases in humans, as well to changed content of neurotransmitters in the central nervous system under experimental conditions. The rostral ventrolateral medulla (RVLM) is a bulbar region that contains sympathetic premotor neurons; the excitatory amino acid L-glutamate seems to be the main neurotransmitter at this level. The aim of the present study was to evaluate the possible change in the L-glutamate sensitivity of the RVLM neurons of malnourished animals. Male Fischer rats were divided into two groups: control (n = 15) and malnourished (n = 19). Four days before the experiments, guide cannulas were implanted bilaterally in direction of the RVLM for microinjection of L-glutamate. Twenty-four hours before the experiments, the femoral artery was cannulated for cardiovascular recordings. The results showed that the baseline heart rate increased in malnourished compared to control animals (412.18 ± 16.03 bpm vs. 370.74 ± 9.59 bpm, respectively). Malnourished animals presented a dissimilar concentration-dependent pressor response curve to L-glutamate and an attenuated baroreflex gain. Our results suggest that post-weaning protein restriction affects glutamatergic neurotransmission of the baroreflex at the RVLM level.


Subject(s)
Animals , Male , Rats , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/pharmacology , Malnutrition/physiopathology , Medulla Oblongata/drug effects , Baroreflex/drug effects , Baroreflex/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Consciousness , Glutamic Acid/administration & dosage , Heart Rate/drug effects , Heart Rate/physiology , Microinjections , Malnutrition/complications , Medulla Oblongata/physiology
SELECTION OF CITATIONS
SEARCH DETAIL