Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Microbiol ; 76: 102380, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703812

ABSTRACT

Novel whole-cell bacterial biosensor designs require an emphasis on moving toward field deployment. Many current sensors are characterized under specified laboratory conditions, which frequently do not represent actual deployment conditions. To this end, recent developments such as toolkits for probing new host chassis that are more robust to environments of interest, have paved the way for improved designs. Strategies for rational tuning of genetic components or tools such as genetic amplifiers or designs that allow post hoc tuning are essential in optimizing existing biosensors for practical application. Furthermore, recent work has seen a rise in directed evolution techniques, which can be immensely valuable in both tuning existing sensors and developing sensors for new analytes that lack characterized sensors. Combined with advancements in bioinformatics and capabilities in rewiring two-component systems, many new sensors can be established, broadening biosensor use cases. Last, recent work in CRISPR-based dynamic regulation and memory mechanisms, as well as kill-switches for biosafety and innovative output integration concepts, represents promising steps toward designing bacterial biosensors for deployment in dynamic and heterogeneous conditions.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Bacteria/genetics , Computational Biology
2.
Cancer Res ; 80(4): 901-911, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31857292

ABSTRACT

Tumors are heterogeneous and composed of cells with different dissemination abilities. Despite significant effort, there is no universal biological marker that serves as a metric for metastatic potential of solid tumors. Common to disseminating cells from such tumors, however, is the need to modulate their adhesion as they detach from the tumor and migrate through stroma to intravasate. Adhesion strength is heterogeneous even among cancer cells within a given population, and using a parallel plate flow chamber, we separated and sorted these populations into weakly and strongly adherent groups; when cultured under stromal conditions, this adhesion phenotype was stable over multiple days, sorting cycles, and common across all epithelial tumor lines investigated. Weakly adherent cells displayed increased migration in both two-dimensional and three-dimensional migration assays; this was maintained for several days in culture. Subpopulations did not show differences in expression of proteins involved in the focal adhesion complex but did exhibit intrinsic focal adhesion assembly as well as contractile differences that resulted from differential expression of genes involved in microtubules, cytoskeleton linkages, and motor activity. In human breast tumors, expression of genes associated with the weakly adherent population resulted in worse progression-free and disease-free intervals. These data suggest that adhesion strength could potentially serve as a stable marker for migration and metastatic potential within a given tumor population and that the fraction of weakly adherent cells present within a tumor could act as a physical marker for metastatic potential. SIGNIFICANCE: Cancer cells exhibit heterogeneity in adhesivity, which can be used to predict metastatic potential.


Subject(s)
Breast Neoplasms/pathology , Cell Adhesion , Focal Adhesions/pathology , Neoplasm Metastasis/pathology , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Culture Techniques , Cell Line, Tumor , Cell Movement , Cell Separation , Coculture Techniques , Cytoskeleton/pathology , Datasets as Topic , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic , Humans , Microtubules/pathology , Progression-Free Survival , RNA-Seq , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...