Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 240(2): 802-814, 2023 10.
Article in English | MEDLINE | ID: mdl-37547977

ABSTRACT

MicroRNA399 (miR399), a phosphate (Pi) starvation-induced long-distance signal, is first produced in shoots and moves to roots to suppress PHO2 encoding a ubiquitin conjugase, leading to enhanced Pi uptake and root-to-shoot translocation. However, the molecular mechanism underlying miR399 long-distance movement remains elusive. Hypocotyl grafting with various Arabidopsis mutants or transgenic lines expressing artificial miR399f was employed. The movement of miR399 across graft junction and the rootstock PHO2 transcript and scion Pi levels were analyzed to elucidate the potential factors involved. Our results showed that miR399f precursors are cell-autonomous and mature miR399f movement is independent of its biogenesis, sequence context, and length (21 or 22 nucleotides). Expressing viral silencing suppressor P19 in the root stele or blocking unloading in the root phloem pore pericycle (PPP) antagonized its silencing effect, suggesting that the miR399f/miR399f* duplex is a mobile entity unloaded through PPP. Notably, the scion miR399f level positively correlates with its amount translocated to rootstocks, implying dose-dependent movement. This study uncovers the molecular basis underlying the miR399-mediated long-distance silencing in coordinating shoot Pi demand with Pi acquisition and translocation activities in the roots.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , MicroRNAs/genetics , Homeostasis , Phosphates/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
2.
Plant Cell Rep ; 38(8): 915-926, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31037366

ABSTRACT

KEY MESSAGE: Transgenic callus and roots of ice plant with altered SnRK1 function were established using Agrobacterium-mediated transformation. The role of McSnRK1 in controlling Na+ influx and Na/K ratio was demonstrated. SnRK1 kinases (SNF1-related protein kinase1) control metabolic adaptation during energy deprivation and regulate protective mechanisms against environmental stress. Yeast SNF1 activates a P-type ATPase, the Na+ exclusion pump, under glucose starvation. The involvement of plant SnRK1 in salt stress response is largely unknown. We previously identified a salt-induced McSnRK1 in the halophyte ice plant (Mesembryanthemum crystallinum). In the current study, the function of McSnRK1 in salt tolerance was analyzed in transgenic cultured cells and roots of ice plant. Ice plant callus constitutively expressed a high level of McSnRK1 and introducing the full-length McSnRK1 did not alter the Na/K ratio at 24 h after 200 mM NaCl treatment. However, interfering with McSnRK1 activity by introducing a truncate McSnRK1 to produce a dominant-negative form of McSnRK1 increased cellular Na+ accumulation and Na/K ratio. As a result, the growth of cultured cells diminished under salt treatment. Hydroponically grown ice plants with roots expressing full-length McSnRK1 had better growth and lowered Na/K ratio compared to the wild-type or vector-only plants. Roots expressing a truncate McSnRK1 had reduced growth and high Na/K ratio under 400 mM NaCl treatment. The changes in Na/K ratio in transgenic cells and whole plants demonstrated the function of SnRK1 in controlling Na+ flux and maintaining Na/K homeostasis under salinity. The Agrobacterium-mediated transformation system could be a versatile tool for functional analysis of genes involved in salt tolerance in the ice plant.


Subject(s)
Mesembryanthemum/enzymology , Mesembryanthemum/metabolism , Protein Serine-Threonine Kinases/metabolism , Homeostasis , Mesembryanthemum/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Potassium/metabolism , Protein Serine-Threonine Kinases/genetics , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/genetics , Sodium/metabolism , Sodium Chloride/pharmacology
3.
Plant Cell Physiol ; 59(9): 1714-1722, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30053262

ABSTRACT

Phosphorus (P) is an essential nutrient, but low concentrations of phosphate (Pi), the predominant form in which it is acquired, in the soil often limits plant growth and reproduction. To adapt to low Pi availability, plants have developed intricate regulatory mechanisms that integrate the environmental stimuli with internal cues in order to exploit the use of P. These mechanisms include sensing external and internal Pi concentrations along with co-ordination between local and long-distance signaling pathways. The downstream actions governed by these signaling pathways include local responses for remodeling the root system architecture and systemic responses for modulating the activities of Pi uptake, remobilization and recycling. As an initially acquired molecule, Pi is considered to be a primary signal that directly regulates Pi starvation responses and sets in motion the generation of subsequent signals, such as hormones, sugars, P-containing metabolites, peptides and mobile RNAs. In this review, we summarize recent progress in understanding the regulatory pathways mediated by these signaling molecules that underlie both local and systemic responses to Pi deprivation, and discuss the potential cross-talk among these signaling pathways.


Subject(s)
Phosphates/metabolism , Plant Physiological Phenomena , Signal Transduction/physiology , Gene Expression Regulation, Plant
4.
Front Plant Sci ; 7: 1143, 2016.
Article in English | MEDLINE | ID: mdl-27555850

ABSTRACT

The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na(+), we found that ice plant roots respond to an increased flux of Na(+) by either secreting or storing Na(+) in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na(+) distribution, ice plant likely responds to increased salinity by using Na(+) as an osmoticum for cell expansion and guard cell opening. Excessive Na(+) could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.

5.
Plant Physiol Biochem ; 80: 211-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24811676

ABSTRACT

RING-type copines are a small family of plant-specific RING-type ubiquitin ligases. They contain an N-terminal myristoylation site for membrane anchoring, a central copine domain for substrate recognition, and a C-terminal RING domain for E2 docking. RING-type copine McCPN1 (copine1) from halophyte ice plant (Mesembryanthemum crystallinum L.) was previously identified from a salt-induced cDNA library. In this work, we characterize the activity, expression, and localization of McCPN1 in ice plant. An in vitro ubiquitination assay of McCPN1 was performed using two ice plant UBCs, McUBC1 and McUBC2, characterized from the same salt-induced cDNA library. The results showed that McUBC2, a member of the UBC8 family, stimulated the autoubiquitination activity of McCPN1, while McUBC1, a homolog of the UBC35 family, did not. The results indicate that McCPN1 has selective E2-dependent E3 ligase activity. We found that McCPN1 localizes primarily on the plasma membrane and in the nucleus of plant cells. Under salt stress, the accumulation of McCPN1 in the roots increases. A yeast two-hybrid screen was used to search for potential McCPN1-interacting partners using a library constructed from salt-stressed ice plants. Screening with full-length McCPN1 identified several independent clones containing partial Argonaute 4 (AGO4) sequence. Subsequent agro-infiltration, protoplast two-hybrid analysis, and bimolecular fluorescence complementation assay confirmed that McCPN1 and AGO4 interacted in vivo in the nucleus of plant cells. The possible involvement of a catalyzed degradation of AGO4 by McCPN1 in response to salt stress is discussed.


Subject(s)
Argonaute Proteins/metabolism , Mesembryanthemum/enzymology , Mesembryanthemum/metabolism , Plant Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Salt-Tolerant Plants/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
6.
J Exp Bot ; 64(8): 2385-400, 2013 May.
Article in English | MEDLINE | ID: mdl-23580756

ABSTRACT

SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1-SnRK1-CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed.


Subject(s)
Adenosine Triphosphatases/physiology , Mesembryanthemum/physiology , Plant Proteins/physiology , Potassium Channels/physiology , Protein Serine-Threonine Kinases/physiology , Salt-Tolerant Plants/physiology , Adenosine Triphosphatases/metabolism , Mesembryanthemum/enzymology , Mesembryanthemum/metabolism , Phosphorylation , Plant Proteins/metabolism , Potassium Channels/metabolism , Protein Processing, Post-Translational/physiology , Protein Serine-Threonine Kinases/metabolism , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/metabolism , Two-Hybrid System Techniques , Ubiquitination/physiology
7.
Plant Signal Behav ; 8(12): e27433, 2013.
Article in English | MEDLINE | ID: mdl-24390077

ABSTRACT

Halophyte Mesembryanthemum crystallinum L. (ice plant) rapidly responds to sudden increases in salinity in its environment by activating specific salt-tolerant mechanisms. One major strategy is to regulate a series of ion transporters and proton pumps to maintain cellular Na(+)/K(+) homeostasis. Plant SKD1 (suppressor of K(+) transport growth defect 1) proteins accumulate in cells actively engaged in the secretory processes, and play a critical role in intracellular protein trafficking. Ice plant SKD1 redistributes from the cytosol to the plasma membrane hours after salt stressed. In combination with present knowledge of this protein, we suggest that stress facilitates SKD1 movement to the plasma membrane where ADP/ATP exchange occurs, and functions in the regulation of membrane components such as ion transporters to avoid ion toxicity.


Subject(s)
Adenosine Triphosphatases/metabolism , Environment , Mesembryanthemum/enzymology , Plant Proteins/metabolism , Salinity , Salt-Tolerant Plants/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Fluorescent Antibody Technique , Models, Biological
8.
Plant Physiol ; 141(1): 135-46, 2006 May.
Article in English | MEDLINE | ID: mdl-16581876

ABSTRACT

A salt-induced gene mcSKD1 (suppressor of K+ transport growth defect) able to facilitate K+ uptake has previously been identified from the halophyte ice plant (Mesembryanthemum crystallinum). The sequence of mcSKD1 is homologous to vacuolar protein sorting 4, an ATPase associated with a variety of cellular activities-type ATPase that participates in the sorting of vacuolar proteins into multivesicular bodies in yeast (Saccharomyces cerevisiae). Recombinant mcSKD1 exhibited ATP hydrolytic activities in vitro with a half-maximal rate at an ATP concentration of 1.25 mm. Point mutations on active site residues abolished its ATPase activity. ADP is both a product and a strong inhibitor of the reaction. ADP-binding form of mcSDK1 greatly reduced its catalytic activity. The mcSKD1 protein accumulated ubiquitously in both vegetative and reproductive parts of plants. Highest accumulation was observed in cells actively engaging in the secretory processes, such as bladder cells of leaf epidermis. Membrane fractionation and double-labeling immunofluorescence showed the predominant localization of mcSKD1 in the endoplasmic reticulum-Golgi network. Immunoelectron microscopy identified the formation of mcSKD1 proteins into small aggregates in the cytosol and associated with membrane continuum within the endomembrane compartments. These results indicated that this ATPase participates in the endoplasmic reticulum-Golgi mediated protein sorting machinery for both housekeeping function and compartmentalization of excess Na+ under high salinity.


Subject(s)
Adaptation, Physiological/genetics , Adenosine Triphosphatases/physiology , Endoplasmic Reticulum/enzymology , Golgi Apparatus/enzymology , Mesembryanthemum/enzymology , Plant Proteins/physiology , Sodium Chloride/metabolism , Adenosine Triphosphatases/analysis , Adenosine Triphosphatases/genetics , Cell Fractionation , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Mesembryanthemum/genetics , Mesembryanthemum/ultrastructure , Microscopy, Immunoelectron , Molecular Sequence Data , Plant Proteins/analysis , Plant Proteins/genetics , Point Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...