Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 120(35): e2307719120, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37603737

ABSTRACT

Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light-based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes.

3.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37581420

ABSTRACT

This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) between a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using second-order perturbation theory and where the donor-acceptor pair is in a homogeneous but dispersive medium. To understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm. However, the E2P-EA rate falls off much more quickly with separation distance than does OP-EA.

4.
J Chem Phys ; 153(4): 044103, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752664

ABSTRACT

We derive the exact steady-state solutions for the simplest model systems of resonant tunneling and tunneling with destructive quantum interference from the driven Liouville-von Neumann (DLvN) approach. Under the finite-state lead condition (the two electrodes have finite states), we analyze the asymptotic behavior of the steady-state current in the two limits of electronic relaxation. Under the infinite-state lead condition, the steady-state solutions of the two model systems can be cast as Landauer-type current formulas. According to the formulas, we show that the transmission functions near the resonant peak and the antiresonant dip can be significantly influenced by electronic relaxation in the electrodes. Moreover, under intermediate and strong electronic relaxation conditions, we analytically show that the steady-state current of the DLvN approach dramatically deviates from the Landauer current when destructive quantum interference occurs. In the regime of zero electronic relaxation, our results are reduced to the Landauer formula, indicating that the DLvN approach is equivalent to the Landauer approach when the leads have infinite states without any electronic relaxation.

SELECTION OF CITATIONS
SEARCH DETAIL
...