Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 95(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33239451

ABSTRACT

Hantaviruses are emerging pathogens that occasionally cause deadly outbreaks in the human population. While the structure of the viral envelope has been characterized with high precision, protein-protein interactions leading to the formation of new virions in infected cells are not fully understood yet. We use quantitative fluorescence microscopy (i.e., Number&Brightness analysis and fluorescence fluctuation spectroscopy) to monitor the interactions that lead to oligomeric spike complex formation in the physiological context of living cells. To this aim, we quantified protein-protein interactions for the glycoproteins Gn and Gc from Puumala and Hantaan orthohantaviruses in several cellular models. The oligomerization of each protein was analyzed in relation to subcellular localization, concentration, and the concentration of its interaction partner. Our results indicate that when expressed separately, Gn and Gc form respectively homo-tetrameric and homo-dimeric complexes, in a concentration-dependent manner. Site-directed mutations or deletion mutants showed the specificity of their homotypic interactions. When both glycoproteins were co-expressed, we observed in the Golgi apparatus clear indication of Gn-Gc interactions and the formation of Gn-Gc multimeric protein complexes of different sizes, while using various labeling schemes to minimize the influence of the fluorescent tags. Such large glycoprotein multimers may be identified as multiple Gn viral spikes interconnected via Gc-Gc contacts. This observation provides a possible first evidence for the initial assembly steps of the viral envelope, within this organelle, directly in living cells.IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantaviruses envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide a possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells.

3.
Biochim Biophys Acta Biomembr ; 1861(6): 1123-1134, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30902626

ABSTRACT

Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1-protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.


Subject(s)
Membrane Lipids/metabolism , Viral Matrix Proteins/metabolism , Membrane Lipids/chemistry , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Viral Matrix Proteins/chemistry
4.
Phys Chem Chem Phys ; 19(5): 4010-4018, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28106194

ABSTRACT

In order to modulate the emission of BODIPY fluorophores, they were connected to a diarylethene (DAE) photoswitch via phenylene-ethynylene linkers of different lengths and orientations. The latter allowed for modulation of the electronic coupling in the prepared four BODIPY-DAE dyads, which were compared also to appropriate BODIPY and DAE model compounds by steady state as well as time-resolved spectroscopies. In their open isomers, all dyads show comparable luminescence behavior indicative of an unperturbed BODIPY fluorophore. In strong contrast, in the closed isomers the BODIPY emission is efficiently quenched but the deactivation mechanism depends on the nature of the linker. The most promising dyad was rendered water-soluble by means of micellar encapsulation and aqueous suspensions were investigated by fluorescence spectroscopy and microscopy. Our results (i) illustrate that the electronic communication between the BODIPY and DAE units can indeed be fine-tuned by the nature of the linker to achieve fluorescence modulation while maintaining photoswitchability and (ii) highlight potential applications to image and control biological processes with high spatio-temporal resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...