Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982932

ABSTRACT

The supramolecular assembly of simple colloids into complex, hierarchical structures arises from a delicate interplay of short-range directional and isotropic long-range forces. These assemblies are highly sensitive to environmental changes, such as temperature variations and the presence of specific molecules, making them promising candidates for nanomachine design. In this study, we investigate the effect of hydrostatic pressure, up to 1800 bar, on the supramolecular assemblies of cyclodextrin/surfactant complexes. Using small-angle neutron scattering, we demonstrate that while the overall structure of the supramolecular aggregates remains largely stable under pressure, the stiffness of the planar lattice formed by the inclusion complexes, the basic structural unit of the supramolecular assemblies, shows a fourfold increase between 250 and 1000 bar. These findings suggest that high-pressure studies can be exploited to better understand the mechanisms of supramolecular assembly processes, thereby aiding in the design of more robust and functional systems.

2.
Int J Biol Macromol ; 245: 125565, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37379951

ABSTRACT

Surface treatment by adhesive polymers is a promising solution to immobilize and study bacteria cells through microscopic assays and, for example, control their growth or determine their susceptibility to antibiotic treatment. The stability of such functional films in wet conditions is crucial, as the film degradation would compromise a persistent use of the coated devices. In this work, low roughness chitosan thin films of degrees of acetylation (DA) ranging from 0.5 % to 49 % were chemically grafted onto silicon and glass substrates and we have demonstrated how the physicochemical properties of the surfaces and the bacterial response were DA-dependent. A fully deacetylated chitosan film presented an anhydrous crystalline structure while the hydrated crystalline allomorph was the preferred structure at higher DA. Moreover, their hydrophilicity increased at higher DA, leading to higher film swelling. Low DA chitosan-grafted substrate favored bacterial growth away from the surface and could be envisioned as bacteriostatic surfaces. Contrarily, an optimum of Escherichia coli adhesion was found for substrates modified with chitosan of DA = 35 %: these surfaces are adapted for the study of bacterial growth and antibiotic testing, with the possibility of reusing the substrates without affecting the grafted film - ideal for limiting single-use devices.


Subject(s)
Chitosan , Chitosan/chemistry , Acetylation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry
3.
Soft Matter ; 19(8): 1523-1530, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36727568

ABSTRACT

This study investigates the temperature responsive behavior of inclusion complexes formed by weakly anionic alkyl ethoxy carboxylates and α (αCD) and ß-cyclodextrins (ßCD). Small-angle neutron scattering (SANS) was performed to probe the structural behaviour at the 1-100 nanometer scale of the hierarchical assemblies at different temperatures. The phase transitions and thermodynamics were systematically monitored as a function of the degree of ionization of the surfactant by differential scanning calorimetry (DSC). Herein, we investigate the effect of the surfactant degree of ionization on the thermoresponsive properties of the inclusion complex supramolecular assemblies. Inclusion complexes formed with the ionized surfactant spontaneously assemble into multilayered structures, which soften with increasing temperature. We also found that the presence of charges is not only required to impart order to the supramolecular assemblies, but also induced in-plane crystallization of the inclusion complexes. Finally, the use of a weakly anionic surfactant allows us to probe the interplay between the charge density and temperature on the assembly of surfactant-cyclodextrin inclusion complexes. This study helps to improve the design of multi-responsive supramolecular systems based on cyclodextrins.

4.
Soft Matter ; 19(8): 1606-1616, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36752562

ABSTRACT

Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 µm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.

5.
Soft Matter ; 18(46): 8733-8747, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36341841

ABSTRACT

Liquid foams are multi-scale structures whose structural characterization requires the combination of very different techniques. This inherently complex task is made more difficult by the fact that foams are also intrinsically unstable systems and that their properties are highly dependent on the production protocol and sample container. To tackle these issues, a new device has been developed that enables the simultaneous time-resolved investigation of foams by small-angle neutron scattering (SANS), electrical conductivity, and bubbles imaging. This device allows the characterization of the foam and its aging from nanometer up to centimeter scale in a single experiment. A specific SANS model was developed to quantitatively adjust the scattering intensity from the dry foam. Structural features such as the liquid fraction, specific surface area of the Plateau borders and inter-bubble films, and thin film thickness were deduced from this analysis, and some of these values were compared with values extracted from the other applied techniques. This approach has been applied to a surfactant-stabilized liquid foam under free drainage and the underlying foam destabilization mechanisms were discussed with unprecedented detail. For example, the information extracted from the image analysis and SANS data allows for the first time to determine the disjoining pressure vs. thickness isotherm in a real, draining foam.

6.
J Appl Crystallogr ; 55(Pt 4): 758-768, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974727

ABSTRACT

The modelling of scattering data from foams is very challenging due to the complex structure of foams and is therefore often reduced to the fitting of single peak positions or feature mimicking. This article presents a more elaborate model to describe the small-angle neutron scattering (SANS) data from foams. The model takes into account the geometry of the foam bubbles and is based on an incoherent superposition of the reflectivity curves arising from the foam films and the small-angle scattering (SAS) contribution from the plateau borders. The model is capable of describing the complete scattering curve of a foam stabilized by the standard cationic surfactant tetradecyltrimethylammonium bromide (C14TAB) with different water contents, i.e. different drainage states, and provides information on the thickness distribution of liquid films inside the foam. The mean film thickness decreases with decreasing water content because of drainage, from 28 to 22 nm, while the polydispersity increases. These results are in good agreement with the film thicknesses of individual horizontal foam films studied with a thin-film pressure balance.

7.
Soft Matter ; 18(35): 6529-6537, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35894255

ABSTRACT

In this work, the inclusion complexes of alkyl ethoxy carboxylates with α-cyclodextrin (αCD) and ß-cyclodextrin (ßCD) were investigated. The thermodynamics of the complexation process was probed by isothermal titration calorimetry (ITC) and volumetry as a function of the degree of ionization of the surfactant. The complexation process was shown to be an enthalpically driven pH-independent process. For both types of cyclodextrins, the complexes were found to spontaneously self-assemble into highly-ordered supramolecular aggregates probed by small-angle neutron scattering and electron and optical microscopy. Herein, we report the formation of thin platelets for nonionized surfactant systems and equally spaced multilayered hollow cylinders for ionized systems in a hierarchical self-assembly process. In addition, the analysis allowed unveiling the effect of the number of ethylene oxides in the surfactants and the CD cavity size on the morphology of the aggregates. Finally, this study also highlights the importance of examining the tuning parameters' influence on the short and long-range interactions involved in the control of the assembly process.

8.
J Colloid Interface Sci ; 627: 160-167, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35842966

ABSTRACT

HYPOTHESIS: Membrane undulations are known to strongly affect the stability of uni- and multilamellar vesicles formed by surfactants or phospholipids. Herein, based on the same arguments, we hypothesise that the properties of polyelectrolyte mediated surfactant multilamellar vesicles, in particular the multiplicity - i.e. the number of layers forming the vesicle - depend on the dynamics of the membrane. EXPERIMENTS: Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) were used to probe the structure and the dynamics of the multilayered vesicles formed in mixtures of the biopolymer chitosan and oppositely charged alkyl ether carboxylates. The neutron scattering data are complemented by static and dynamic light scattering experiments. Experiments were performed in polyelectrolyte excess conditions, and at a pH close to the pKa of the surfactant. FINDINGS: The structural investigation shows very clearly that multilayered surfactant/polyelectrolyte vesicles are formed in the investigated mixtures. Only 3 to 5 layers form, on average, one vesicle, as similarly found in mixtures of chitosan and phospholipid vesicles. NSE shows that the surfactant membrane becomes stiffer upon complexation with chitosan, and that the fluctuation of the layers is strongly coupled in time and space. Such strong coupling and the increase in overall stiffness is associated with a high entropic cost. Accordingly, the combined SANS and NSE study points out that the low multiplicity found in multilayered vesicles involving the rigid polysaccharide chitosan arises from the strongly coupled dynamics of the membrane layers.


Subject(s)
Chitosan , Chitosan/chemistry , Ether , Ethers , Ethyl Ethers , Phospholipids/chemistry , Polyelectrolytes , Surface-Active Agents/chemistry
9.
ACS Appl Polym Mater ; 4(5): 3062-3087, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35601464

ABSTRACT

For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.

10.
Nanoscale ; 13(31): 13421-13426, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34477747

ABSTRACT

Identification and control of the disintegration mechanism of polymer nanoparticles are essential for applications in transport and release including polymer delivery systems. Structural changes during the disintegration of poly(N-isopropylacrylamide) (PNIPAM) mesoglobules in aqueous solution are studied in situ and in real time using kinetic small-angle neutron scattering with a time resolution of 50 ms. Simultaneously length scales between 1 and 100 nm are resolved. By initiating phase separation through fast pressure jumps across the coexistence line, 3 wt% PNIPAM solutions are rapidly brought into the one-phase state. Starting at the same temperature (35.1 °C) and pressure (17 MPa) the target pressure is varied over the range 25-48 MPa, allowing to systematically alter the osmotic pressure of the solvent within the mesoglobules. Initially, the mesoglobules have a radius of gyration of about 80 nm and contain a small amount of water. Two disintegration mechanisms are identified: (i) for target pressures close to the coexistence line, single polymers are released from the surface of the mesoglobules, and the mesoglobules decrease in size, which takes ∼30 s. (ii) For target pressures more distant from the coexistence line, the mesoglobules are swollen by water, and subsequently the chains become more and more loosely associated. In this case, disintegration proceeds within less than 10 s, controlled by the osmotic pressure of the solvent.

11.
Langmuir ; 37(32): 9858-9864, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34369144

ABSTRACT

This study evidences the adsorption of model nonionic polymers onto aluminogermanate imogolite nanotubes, attractive porous nanofillers with potential molecular loading and release applications. We resolve the underlying mechanisms between nanotubes and polyethylene glycols with different molecular weights by means of nanoisothermal titration calorimetry. The analysis of the results provides a direct thermodynamic characterization, allowing us to propose a detailed description of the energetics involved in the formation of polymer/imogolite complexes. The affinity toward the nanotube surface is enthalpy-driven and strongly depends on the polymer chain length, which significantly affects the polymer configuration and the flow properties of the resulting complexes, probed by small-angle neutron scattering and rheology, respectively. These findings open new avenues for the rational design of these hybrid mixtures for advanced applications.

12.
Adv Colloid Interface Sci ; 289: 102375, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33592397

ABSTRACT

Cyclodextrins (CDs) play an important role in self-assembly systems of amphiphiles. The structure of CDs provides distinguished physicochemical properties, including the ability to form host-guest complexes. The complexation affects the properties of guest molecules and can produce supramolecular aggregates with desirable characteristics for fundamental and practical applications. Surfactants are particularly attractive host molecules due to their wide variety, availability, responsiveness to different stimuli, and high relevance in different fields, e.g. medical, cosmetic, pharmaceutical, and food industries. The tendency of organization in higher-order supramolecular aggregates arises the interest in applying such versatile complexes in the development of novel materials. In this review, we provide a comprehensive overview of the thermodynamics aspects of surfactants and CDs inclusion complexes formation in aqueous environment, emphasizing the assessment of the interactions, thermodynamic driving forces, and structural aspects. Also, the most common analytical techniques used to gather deep insight into the aspects of CDs complexes are discussed and the perspectives for the surfactant-cyclodextrin complexes are pointed out.

13.
J Mater Chem B ; 9(3): 594-611, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33305783

ABSTRACT

Chitosan is one of the most studied cationic polysaccharides. Due to its unique characteristics of being water soluble, biocompatible, biodegradable, and non-toxic, this macromolecule is highly attractive for a broad range of applications. In addition, its complex behavior and the number of ways it interacts with different components in a system result in an astonishing variety of chitosan-based materials. Herein, we present recent advances in the field of chitosan-based materials from a physico-chemical perspective, with focus on aqueous mixtures with oppositely charged colloids, chitosan-based thin films, and nanocomposite systems. In this review, we focus our attention on the physico-chemical properties of chitosan-based materials, including solubility, mechanical resistance, barrier properties, and thermal behaviour, and provide a link to the chemical peculiarities of chitosan, such as its intrinsic low solubility, high rigidity, large charge separation, and strong tendency to form intra- and inter-molecular hydrogen bonds.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Hydrogen Bonding , Particle Size , Solubility , Surface Properties , Temperature
14.
Langmuir ; 36(37): 10941-10951, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32852955

ABSTRACT

In the last few years, hybrid lipid-copolymer assemblies have attracted increasing attention as possible two-dimensional (2D) membrane platforms, combining the biorelevance of the lipid building blocks with the stability and chemical tunability of copolymers. The relevance of these systems varies from fundamental studies on biological membrane-related phenomena to the construction of 2D complex devices for material science and biosensor technology. Both the fundamental understanding and the application of hybrid lipid-copolymer-supported bilayers require thorough physicochemical comprehension and structural control. Herein, we report a comprehensive physicochemical and structural characterization of hybrid monolayers at the air/water interface and of solid-supported hybrid membranes constituted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the block copolymer poly(butadiene-b-ethyleneoxide) (PBD-b-PEO). Hybrid lipid-copolymer supported bilayers (HSLBs) with variable copolymer contents were prepared through spontaneous rupture and fusion of hybrid vesicles onto a hydrophilic substrate. The properties of the thin films and the parent vesicles were probed through dynamic light scattering (DLS), differential scanning calorimetry (DSC), optical ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and confocal scanning laser microscopy (CSLM). Stable, hybrid lipid/copolymer systems were obtained for a copolymer content of 10-65 mol %. In particular, DSC and CSLM show lateral phase separation in these hybrid systems. These results improve our fundamental understanding of HSLBs, which is necessary for future applications of hybrid systems as biomimetic membranes or as drug delivery systems, with additional properties with respect to phospholipid liposomes.

15.
Soft Matter ; 16(30): 7137-7143, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32662480

ABSTRACT

In this contribution, we investigate the effect of the type of counterion on the properties of dilute solutions of polyoxyethylene alkyl ether carboxylic acids. Two different surfactants, presenting an oleic acid alkyl chain and on-average five and nine ethylene oxide units, and terminated by a weakly anionic carboxymethyl group were studied. The surfactants were gradually ionized with sodium hydroxide, arginine, and choline hydroxide. The solutions properties were probed by light scattering, electrophoretic mobility, density and sound velocity measurements, as well as by small-angle neutron scattering. To our initial surprise, no specific effect arising from the nature of the counterion could be determined. We ascribe this phenomenon to the fact that the presence of the ethylene oxide units markedly dilutes the surfactant head group charge density, reducing counterion condensation and subsequent counterion specific effects.

16.
Phys Chem Chem Phys ; 22(15): 8193-8202, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32249883

ABSTRACT

The structural properties of halloysite/biopolymer aqueous mixtures were firstly investigated by means of combining different techniques, including small-angle neutron scattering (SANS), electric birefringence (EBR) and fluorescence correlation spectroscopy (FCS). Among the biopolymers, non-ionic hydroxypropylcellulose and polyelectrolytes (anionic alginate and cationic chitosan) were selected. On this basis, the specific supramolecular interactions were correlated to the structural behavior of the halloysite/biopolymer mixtures. SANS data were analyzed in order to investigate the influence of the biopolymer adsorption on the halloysite gyration radius. In addition, a morphological description of the biopolymer-coated halloysite nanotubes (HNTs) was obtained by the simulation of SANS curves. EBR experiments evidenced that the orientation dynamics of the nanotubes in the electric field is influenced by the specific interactions with the polymers. Namely, both variations of the polymer charge and/or wrapping mechanisms strongly affected the HNT alignment process and, consequently, the rotational mobility of the nanotubes. FCS measurements with fluorescently labeled biopolymers allowed us to study the aqueous dynamic behavior of ionic biopolymers after their adsorption onto the HNT surfaces. The combination of EBR and FCS results revealed that the adsorption process reduces the mobility in water of both components. These effects are strongly enhanced by HNT/polyelectrolyte electrostatic interactions and wrapping processes occurring in the halloysite/chitosan mixture. The attained findings can be useful for designing halloysite/polymer hybrids with controlled structural properties.

17.
Soft Matter ; 15(42): 8611-8620, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31621749

ABSTRACT

The degree of ionisation of a weakly acidic surfactant can be continuously modified from nonionic to ionic by adjusting the pH. This property can be used to control the curvature and therefore the morphology of the self-assembled aggregates it forms in solution. Herein, we report the surprising phenomenon, observed in the alkyl ether oligo(ethylene oxide) carboxylate (CH3(CH2)11/13OEO4.5CH2COOH), whereby it is not only the pH but also the neutralisation rate that affects the aggregate morphology. Specifically, when the pH is increased slowly, up to 40 wt% of the surfactant remains in a long-lived vesicle state at high pH. This phenomenon was characterised in detail by small-angle neutron scattering and light scattering techniques. The cause of this phenomenon is thought to be related to a combination of polydispersity and the formation of acid-carboxylate dimers close to the pKa. The transition of these vesicles to the thermodynamically favoured micelles at high pH is inhibited by a high activation energy barrier and therefore only occurs very slowly. Increasing the NaCl concentration eliminates the presence of vesicles at high pH, demonstrating that the activation energy for the vesicle-to-micelle transition depends strongly on electrostatic interactions. These experiments show that the preparation pathway can be used to obtain different self-assembled structures at identical conditions via kinetic control. This phenomenon provides a useful tool for devising formulations where the properties of the system can be altered without changing the composition.

18.
Chem Sci ; 10(2): 385-397, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30713642

ABSTRACT

The ionic assembly of oppositely charged polyelectrolyte-surfactant complexes (PESCs) is often done with the aim of constructing more functional colloids, for instance as advanced delivery systems. However, PESCs are often not easily loaded with a solubilisate due to intrinsic restrictions of such complexes. This question was addressed from a different starting point: by employing microemulsion droplets as heavily loaded surfactant systems and thereby avoiding potential solubilisation limitations from the beginning. We investigated mixtures of cationic oil-in-water (O/W) microemulsion droplets and oppositely charged sodium polyacrylate (NaPA) and determined structure and phase behaviour as a function of the mixing ratio for different droplet sizes and different M w (NaPA). Around an equimolar charge ratio an extended precipitate region is present, which becomes wider for larger droplets and with increasing M w of the NaPA. Static and dynamic light scattering (SLS and DLS) and small-angle neutron scattering (SANS) show the formation of one-dimensional arrangements of microemulsion droplets for polyelectrolyte excess, which become more elongated with increasing M w (NaPA) and less so with increasing NaPA excess. What is interesting is a marked sensitivity to ionic strength, where already a modest increase to ∼20 mM leads to a dissolution of the complexes. This work shows that polyelectrolyte/microemulsion complexes (PEMECs) are structurally very versatile hybrid systems, combining the high solubilisate loading of microemulsions with the larger-scale structuring induced by the polymer, thereby markedly extending the concept of conventional PESCs. This type of system has not been described before and is highly promising for future applications where high payloads are to be formulated.

19.
J Colloid Interface Sci ; 534: 430-439, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30245340

ABSTRACT

HYPOTHESIS: Ionic dendronic head groups possess very different structural features than simple surfactant head groups. Accordingly, their self-assembly behavior is expected to differ from that of conventional surfactants. The number of generations of the headgroup should play a particularly relevant role. EXPERIMENTS: A novel type of surfactants with different dendronic head groups (cationic and anionic) was studied in this work. A systematic variation of the number of generations of the head group (n = 1, 2, and 3), of the head group charge (cationic and anionic), and of the length of the hydrophobic chain (hexanoyl and hexadecanoyl chains) was performed and the self-assembly behavior probed by means of small-angle neutron scattering (SANS) in order to obtain detailed structural insights. FINDINGS: The analysis of the scattering data shows that the general packing parameter concept applies also to dendrimeric surfactants and a larger head group results in smaller aggregates. However, in contrast to conventional surfactants, increasing the head group size results in a stronger tendency to self-aggregate, as a consequence of the head group's partly hydrophobic character. Another peculiarity of the self-assembled aggregates, is the low aggregation numbers and the high water content within the micelle, as a result of the highly branched head group.

20.
Sci Rep ; 8(1): 7299, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740024

ABSTRACT

A new sample environment for the observation of ongoing chemical reactions is introduced for small-angle neutron scattering (SANS) experiments which enables structural changes to be followed continuously across a wide Q-range in response to changes in the chemical environment. The approach is demonstrated and validated by performing single and multiple potentiometric titrations on an aqueous anionic surfactant solution (oligo-oxyethylene alkylether carboxylic acid in D2O) with addition times varying from 1 s to 2 h. It is shown that the continuous flow set-up offers considerable advantages over classical 'static' measurements with regards to sample throughput, compositional precision and the ability to observe fast structural transitions. Finally, the capabilities and ongoing optimisation of the sample environment are discussed with reference to potential applications in the fields of biology, colloidal systems and complex soft matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...