Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282537

ABSTRACT

Immunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines. Here we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (ID, n=25) diseases. We show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to both virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus. Hence, additional booster doses are recommended to frail patients.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22270143

ABSTRACT

ObjectivesComparative analysis between different monoclonal antibodies (mAbs) against SARS-CoV-2 are lacking. We present an emulation trial from observational data to compare effectiveness of Bamlanivimab/Etesevimab (BAM/ETE) and Casirivimab/Imdevimab (CAS/IMD) in outpatients with early mild-to-moderate COVID-19 in a real-world scenario of variants of concern (VoCs) from Alpha to Delta. MethodsAllocation to treatment was subject to mAbs availability, and the measured factors were not used to determine which combination to use. Patients were followed through day 30. Viral load was measured by cycle threshold (CT) on D1 (baseline) and D7. Primary outcome was time to COVID-19-related hospitalization or death from any cause over days 0-30. Weighted pooled logistic regression and marginal structural Cox model by inverse probability weights were used to compare BAM/ETE vs. CAS/IMD. ANCOVA was used to compare mean D7 CT values by intervention. Models were adjusted for calendar month, MASS score and VoCs. We evaluated effect measure modification by VoCs, vaccination, D1 CT levels and enrolment period. ResultsCOVID19-related hospitalization or death from any cause occurred in 15 of 237 patients in the BAM/ETE group (6.3%) and in 4 of 196 patients in the CAS/IMD group (2.0%) (relative risk reduction [1 minus the relative risk] 72%; p=0.024). Subset analysis carried no evidence that the effect of the intervention was different across stratification factors. There was no evidence in viral load reduction from baseline through day 7 across the two groups (+0.17, 95% -1.41;+1.74, p=0.83). Among patients who experienced primary outcome, none showed a negative RT-PCR test in nasopharingeal swab (p=0.009) and 82.4% showed still high viral load (p<0.001) on D7. ConclusionsIn a pre-Omicron epidemiologic scenario, CAS/IMD reduced risk of clinical progression of COVID-19 compared to BAM/ETE. This effect was not associated with a concomitant difference in virological response.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22269133

ABSTRACT

BackgroundPatients with solid or hematological tumors, neurological and immune-inflammatory disorders represent potentially fragile subjects with increased risk to experience severe COVID-19 and inadequate response to SARS-CoV2 vaccination. MethodsWe designed a prospective Italian multicentric study to assess humoral and T-cell response to SARS-CoV2 vaccination in patients (n=378) with solid tumors (ST), hematological malignancies (HM), neurological (ND) and immuno-rheumatological diseases (ID). The immunogenicity of primary vaccination schedule and of the booster dose were analyzed. ResultsOverall, patient seroconversion rate after two doses was 62.1%. A significant lower rate was observed in HM (52.4%) and ID (51.9%) patients compared to ST (95.6%) and ND (70.7%); a lower median level of antibodies was detected in HM and ID versus the others (p<0.0001). A similar rate of patients with a positive SARS-CoV2 T-cell response was observed in all disease groups, with a higher level observed in the ND group. The booster dose improved humoral responses in all disease groups, although with a lower response in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, the independent predictors for seroconversion were disease subgroups, type of therapies and age. Notably, the ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (p<0.0001), but had no effects on the T-cell responses. ConclusionsImmunosuppressive treatment more than disease type per se is a risk factor for low humoral response after vaccination. The booster dose can improve both humoral and T-cell response. Articles main point- Lower rate of seroconversion was observed in fragile patients as compared to healthy controls - The booster dose improves humoral and T-cell response in all fragile patient groups - Immunosuppressive treatment was associated with the worst humoral response to vaccination, but had no effects on T-cell responses.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21258961

ABSTRACT

Here we report on the humoral and cellular immune response in eight volunteers who autonomously chose to adhere to the Italian national COVID-19 vaccination campaign more than 3 months after receiving a single administration GRAd-COV2 vaccine candidate in the context of the phase 1 clinical trial. We observed a clear boost of both binding/neutralizing antibodies as well as T cell responses upon receipt of the heterologous BNT162b2 or ChAdOx1-nCOV19 vaccines. These results, despite the limitation of the small sample size, support the concept that a single-dose of an adenoviral vaccine may represent an ideal tool to effectively prime a balanced immune response, which can be boosted to high levels by a single dose of a different vaccine platform.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21258284

ABSTRACT

Specific memory B cells and antibodies are reliable read-out of vaccine efficacy. We analyzed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly-specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase thus predicting a sustained protection from COVID-19. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=112 SRC="FIGDIR/small/21258284v1_ufig1.gif" ALT="Figure 1"> View larger version (28K): org.highwire.dtl.DTLVardef@1700325org.highwire.dtl.DTLVardef@deb172org.highwire.dtl.DTLVardef@53f056org.highwire.dtl.DTLVardef@c7a98d_HPS_FORMAT_FIGEXP M_FIG Graphical Abstract C_FIG

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21255202

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are urgently needed to control the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand. We have developed a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized pre-fusion SARS-CoV-2 Spike protein, named GRAd-COV2. We aimed to assess the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. To this purpose, a phase 1, dose-escalation, open-label trial was conducted including 90 healthy subjects, (45 aged 18-55 years and 45 aged 65-85 years), who received a single intramuscular administration of GRAd-CoV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious AE was reported. Four weeks after vaccination, seroconversion to Spike/RBD was achieved in 43/44 young volunteers and in 45/45 older subjects. Consistently, neutralizing antibodies were detected in 42/44 younger age and 45/45 older age volunteers. In addition, GRAd-COV2 induced a robust and Th1-skewed T cell response against the S antigen in 89/90 subjects from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support further development of this vaccine. One Sentence SummaryGRAd-COV2, a candidate vaccine for COVID-19 based on a novel gorilla adenovirus, is safe and immunogenic in younger and older adults

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-328302

ABSTRACT

Human monoclonal antibodies are safe, preventive and therapeutic tools, that can be rapidly developed to help restore the massive health and economic disruption caused by the Covid-19 pandemic. By single cell sorting 4277 SARS-CoV-2 spike protein specific memory B cells from 14 Covid-19 survivors, 453 neutralizing antibodies were identified and 220 of them were expressed as IgG. Up to 65,9% of monoclonals neutralized the wild type virus at a concentration of >500 ng/mL, 23,6% neutralized the virus in the range of 100 - 500 ng/mL and 9,1% had a neutralization potency in the range of 10 - 100 ng/mL. Only 1,4% neutralized the authentic virus with a potency of 1-10 ng/mL. We found that the most potent neutralizing antibodies are extremely rare and recognize the RBD, followed in potency by antibodies that recognize the S1 domain, the S-protein trimeric structure and the S2 subunit. The three most potent monoclonal antibodies identified were able to neutralize the wild type and D614G mutant viruses with less than 10 ng/mL and are good candidates for the development of prophylactic and therapeutic tools against SARS-CoV-2. One Sentence SummaryExtremely potent neutralizing human monoclonal antibodies isolated from Covid-19 convalescent patients for prophylactic and therapeutic interventions.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20137141

ABSTRACT

SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focussed on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; 8 patients with Mild COVID-19 disease and 8 cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated to asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-078154

ABSTRACT

In the absence of approved drugs or vaccines, there is a pressing need to develop tools for therapy and prevention of Covid-19. Human monoclonal antibodies have very good probability of being safe and effective tools for therapy and prevention of SARS-CoV-2 infection and disease. Here we describe the screening of PBMCs from seven people who survived Covid-19 infection to isolate human monoclonal antibodies against SARS-CoV-2. Over 1,100 memory B cells were single-cell sorted using the stabilized prefusion form of the spike protein and incubated for two weeks to allow natural production of antibodies. Supernatants from each cell were tested by ELISA for spike protein binding, and positive antibodies were further tested for neutralization of spike binding to receptor(s) on Vero E6 cells and for virus neutralization in vitro. From the 1,167 memory B specific for SARS-CoV-2, we recovered 318 B lymphocytes expressing human monoclonals recognizing the spike protein and 74 of these were able to inhibit the binding of the spike protein to the receptor. Finally, 17 mAbs were able to neutralize the virus when assessed for neutralization in vitro. Lead candidates to progress into the drug development pipeline will be selected from the panel of neutralizing antibodies identified with the procedure described in this study. One Sentence SummaryNeutralizing human monoclonal antibodies isolated from Covid-19 convalescent patients for therapeutic and prophylactic interventions.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-082487

ABSTRACT

BackgroundEpidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. MethodsWe investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-host interactome was carried out in order to provide a theoretic host-pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein-protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. ResultsAlthough the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. ConclusionsIn this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...