Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 23(21): 21395-21406, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27502566

ABSTRACT

The photocatalytic treatment of gaseous benzene under visible light irradiation was developed using electrospun carbon nanotube/titanium dioxide (CNT/TiO2) nanofibers as visible light active photocatalysts. The CNT/TiO2 nanofibers were fabricated by electrospinning CNT/poly(vinyl pyrrolidone) (PVP) solution followed by the removal of PVP by calcination at 450 °C. The molar ratio of CNT/TiO2 was fixed at 0.05:1 by weight, and the quantity of CNT/TiO2 loaded in PVP solution varied between 30 and 60 % wt. CNT/TiO2 nanofibers have high specific surface area (116 m2/g), significantly higher than that of TiO2 nanofibers (44 m2/g). The photocatalytic performance of the CNT/TiO2 nanofibers was investigated by decolorization of 1 × 10-5 M methylene blue (MB) dye (in water solution) and degradation of 100 ppm gaseous benzene under visible light irradiation. The 50-CNT/TiO2 nanofibers (calcined CNT/TiO2 nanofibers fabricated from a spinning solution of 50 % wt CNT/TiO2 based on PVP) had higher MB degradation efficiency (58 %) than did other CNT/TiO2 nanofibers and pristine TiO2 nanofibers (15 %) under visible light irradiation. The photocatalytic degradation of gaseous benzene under visible light irradiation on filters made of 50-CNT/TiO2 nanofibers was carried out in a simulated air purifier system. Similar to MB results, the degradation efficiency of gaseous benzene by 50-CNT/TiO2 nanofibers (52 %) was higher than by other CNT/TiO2 nanofibers and pristine TiO2 nanofibers (18 %). The synergistic effects of the larger surface area and lower band gap energy of CNT/TiO2 nanofibers were presented as strong adsorption ability and greater visible light adsorption. The CNT/TiO2 nanofiber prepared in this study has potential for use in air purifiers to improve air treatment efficiency with less energy.


Subject(s)
Air Pollutants/analysis , Benzene/analysis , Light , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Titanium/chemistry , Adsorption , Air Filters , Catalysis , Methylene Blue/analysis , Nanofibers/radiation effects , Nanotubes, Carbon/radiation effects , Surface Properties , Titanium/radiation effects
2.
Environ Sci Pollut Res Int ; 23(6): 5538-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26573315

ABSTRACT

Selective adsorbent of benzene, toluene, ethylbenzene, and xylenes (BTEX) was developed based on mesoporous silica materials, RH-MCM-41. It was synthesized from rice husk silica and modified by silane reagents. The silane reagents used in this study were trimethylchlorosilane (TMS), triisopropylchlorosilane (TIPS), and phenyldimethylchlorosilane (PDMS). Physiochemical properties of synthesized materials were characterized by small-angle X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), and surface area analysis. Materials packed in passive air sampler were tested for BTEX uptake capacity. The tests were carried out under an influence of relative humidity (25 to 99 %). Overall, RH-MCM-41 modified by TMS outperformed compared to those modified by other silane agents. The comparative BTEX adsorption on this material and commercial graphitized carbon black was reported.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Oryza/chemistry , Silicon Dioxide/chemistry , Adsorption , Benzene/analysis , Benzene Derivatives/analysis , Humidity , Silanes , Toluene/analysis , Xylenes/analysis
3.
J Environ Sci (China) ; 32: 207-16, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26040747

ABSTRACT

Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.


Subject(s)
Charcoal/chemistry , Mercury/isolation & purification , Natural Gas/analysis , Silver/chemistry , Titanium/chemistry , Adsorption , Microscopy, Electron, Scanning , Surface Properties , Thermodynamics , Volatilization , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...