Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Phys Lipids ; 231: 104936, 2020 09.
Article in English | MEDLINE | ID: mdl-32589880

ABSTRACT

In the present work, we obtained polymeric diacetylene liposomes that can associate N-Acetyl-l-Cysteine (NAC), a broad spectrum mucolytic. The reason for studying these formulations is that they could be applied in the future as NAC delivery systems, with a possible dose reduction but maintaining its effect. Liposomes used herein are obtained by a photopolymerization reaction, thus gaining stability and rigidity. Lipids belonging to lung surfactant were added in different ratios to the formulations in order to maximize its possible interaction with the lung tissue. Because of lipopolymer stability, the oral or nasal route could be appropriated. This formulation could efficiently transport NAC to exert its mucolytic activity and help in diseases such as cystic fibrosis, which has abnormal mucus production. Also, this type of treatment could be useful in other types of diseases, interacting with the mucus layer and making the lung tissue more permeable to other therapies. Formulations so obtained presented high levels of polymerization. Also, they present small hollow fibers structures with a high number of polymeric units. These types of arrangements could present advantages in the field of drug delivery, giving the possibility of a controlled release. Lipopolymers with lipids from lung surfactant associated with NAC are promising complexes in order to treat not only respiratory illnesses. The stability of the formulation would allow its inoculation through other routes such as the oral one, helping the reposition of NAC as an antioxidant drug. Finally, these formulations are non-toxic and easy to produce.


Subject(s)
Acetylcysteine/chemistry , Cystic Fibrosis/drug therapy , Lipids/pharmacology , Polymers/pharmacology , Pulmonary Surfactants/chemistry , A549 Cells , Cell Survival/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Particle Size , Polymers/chemistry , Surface Properties
2.
Toxicol Appl Pharmacol ; 337: 1-11, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28993268

ABSTRACT

This article reports novel results about nanotoxicological and teratogenic effects of the PAMAM dendrimers DG4 and DG4.5 in zebrafish (Danio rerio). Zebrafish embryos and larvae were used as a rapid, high-throughput, cost-effective whole-animal model. The objective was to provide a more comprehensive and predictive developmental toxicity screening of DG4 and DG4.5 and test the influence of their surface charge. Nanotoxicological and teratogenic effects were assessed at developmental, morphological, cardiac, neurological and hepatic level. The effect of surface charge was determined in both larvae and embryos. DG4 with positive surface charge was more toxic than DG4.5 with negative surface charge. DG4 and DG4.5 induced teratogenic effects in larvae, whereas DG4 also induced lethal effects in both zebrafish embryos and larvae. However, larvae were less sensitive than embryos to the lethal effects of DG4. The platform of assays proposed and data obtained may contribute to the characterization of hazards and differential effects of these nanoparticles.


Subject(s)
Abnormalities, Drug-Induced/etiology , Dendrimers/toxicity , Nanoparticles/toxicity , Nanotechnology/methods , Teratogens/toxicity , Toxicology/methods , Zebrafish/abnormalities , Animals , Anions , Cations , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Heart/drug effects , Heart/physiopathology , Heart Rate/drug effects , High-Throughput Screening Assays , Larva/drug effects , Lethal Dose 50 , Liver/abnormalities , Liver/drug effects , Locomotion/drug effects , Nervous System/drug effects , Nervous System/physiopathology , Risk Assessment , Surface Properties
3.
Front Physiol ; 7: 151, 2016.
Article in English | MEDLINE | ID: mdl-27199766

ABSTRACT

Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases.

4.
J Food Sci Technol ; 52(12): 7828-38, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26604355

ABSTRACT

Liposomes were developed with bioactive constituents (omega-3, omega-6, tocopherol) incorporated in acid food. They were made of soy phosphatidylcholine (SPC) allowing the encapsulation of antioxidant vitamin C (VC) and tocopherol. Stearic acid (SA) or calcium stearate (CaS) was added as a bilayer stabilizer. The structural and oxidative stability of the liposomes were studied considering the heat effect of pasteurization. Size was analyzed by light scattering; shape and structure were studied by optical and transmission electron microscopy, respectively. Membrane packing was studied with merocyanine 540. Surface charge and oxidative stability were analyzed by zeta potential and ORAC method, respectively. The liposomes showed significant stability in all of the parameters mentioned above and an important protective effect over thermolabile VC. To confirm their applicability in food, the rheological behavior and a sensory evaluation of liposomes with vitamin C and bioactive constituents were studied. The sensory evaluation of liposomes in orange juice was performed by the overall acceptability and triangular tests with 40 and 78 potential consumers, respectively. The incorporation of all liposomal formulation did not change the acceptability of orange juice. Noteworthy, SPC and SPC:SA systems had rheological behavior similar to a Newtonian fluid whereas that SPC:CaS presented a pseudoplastic one, both considered excellent for larger scale production. From all the obtained results, we can conclude that these liposomal formulations are suitable for food industry applications, incorporating bioactive constituents and generating functional orange juice that conserves its bioactivity after pasteurization.

5.
J Pharm Sci ; 104(12): 4142-4152, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26359783

ABSTRACT

Emulsions are gaining increasing interest to be applied as drug delivery systems. The main goal of this work was the formulation of an oil/water nutraceutical emulsion (NE) for oral administration, enriched in omega 3 (ω3) and omega 6 (ω6), and able to encapsulate risperidone (RISP), an antipsychotic drug widely used in the treatment of autism spectrum disorders (ASD). RISP has low solubility in aqueous medium and poor bioavailability because of its metabolism and high protein binding. Coadministration of ω3, ω3, and vitamin E complexed with RISP might increase its bioavailability and induce a synergistic effect on the treatment of ASD. Here, we developed an easy and quick method to obtain NEs and then optimized them. The best formulation was chosen after characterization by particle size, defects of the oil-in-water interface, zeta potential (ZP), and in vitro drug release. The formulation selected was stable over time, with a particle size of around 3 µm, a ZP lower than -20 mV and controlled drug release. To better understand the biochemical properties of the formulation obtained, we studied in vitro toxicity in the Caco-2 cell line. After 4 h of treatment, an increase in cellular metabolism was observed for all RISP concentrations, but emulsions did not change their metabolic rate, except at the highest concentration without drug (25 µg/mL), which showed a significant reduction in metabolism respect to the control. Additionally, locomotor activity and heart rate in zebrafish were measured as parameters of in vivo toxicity. Only the highest concentration (0.625 µg/mL) showed a cardiotoxic effect, which corresponds to the decrease in spontaneous movement observed previously. As all the materials contained in the formulations were US FDA approved, the NE selected would be good candidate for clinical trials.


Subject(s)
Emulsions/pharmacology , Risperidone/pharmacology , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Chemistry, Pharmaceutical/methods , Dietary Supplements , Drug Delivery Systems/methods , Female , Heart Rate/drug effects , Humans , Male , Motor Activity/drug effects , Particle Size , Solubility , Zebrafish
6.
PLoS One ; 9(2): e90393, 2014.
Article in English | MEDLINE | ID: mdl-24587349

ABSTRACT

Risperidone is an approved antipsychotic drug belonging to the chemical class of benzisoxazole. This drug has low solubility in aqueous medium and poor bioavailability due to extensive first-pass metabolism and high protein binding (>90%). Since new strategies to improve efficient treatments are needed, we studied the efficiency of anionic G4.5 PAMAM dendrimers as nanocarriers for this therapeutic drug. To this end, we explored dendrimer-risperidone complexation dependence on solvent concentration, pH and molar relationship. The best dendrimer-risperidone incorporation (46 risperidone molecules per dendrimer) was achieved with a mixture of chloroform:methanol 50∶50 v/v solution pH 3. In addition, to explore the possible effects of this complex, in vivo studies were carried out in the zebrafish model. Changes in the development of dopaminergic neurons and motoneurons were studied using tyrosine hydroxylase and calretinin, respectively. Physiological changes were studied through histological sections stained with hematoxylin-eosin to observe possible morphological brain changes. The most significant changes were observed when larvae were treated with free risperidone, and no changes were observed when larvae were treated with the complex.


Subject(s)
Antipsychotic Agents/pharmacology , Dendrimers/chemistry , Dopaminergic Neurons/drug effects , Motor Neurons/drug effects , Risperidone/pharmacology , Animals , Antipsychotic Agents/chemistry , Biomarkers/metabolism , Brain/cytology , Brain/drug effects , Brain/physiology , Calbindin 2/genetics , Calbindin 2/metabolism , Cell Survival/drug effects , Dendrimers/pharmacology , Dopaminergic Neurons/cytology , Dopaminergic Neurons/physiology , Drug Carriers , Gene Expression , Hydrogen-Ion Concentration , Motor Neurons/cytology , Motor Neurons/physiology , Risperidone/chemistry , Solvents , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
J Liposome Res ; 21(2): 124-33, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20550461

ABSTRACT

Vaccine development today encounters a main obstacle, which is the need for effective adjuvants suitable for clinical trials. Aluminum salts, discovered 70 years ago and, very recently, MF59, are the only types of adjuvants currently used in vaccines licensed by the U.S. Food and Drug Administration. Liposomes represent an alternative approach to vaccine adjuvants. In this article, we describe the inflammatory response and biological effect of polymerization and the addition of positive charges in liposome formulations. Nonpolymerized cationic (NP(+)) liposomes significantly reduce metabolism in Vero cells after 24 hours. Correspondingly, both NP(+) and polymerized cationic (P(+)) liposomes reduce cell viability following a 48-hour incubation. Similar results were obtained with cells from the peritoneal cavities of mice. Paradoxically, those liposomes that presented clearly cytostatic or cytotoxic effects in vitro stimulated metabolism and had a mitogenic effect in vivo. Finally, the adjuvant effect was tested by immunization in BALB/c mice. The major effect was obtained with NP(+) liposomes. Accordingly, we also demonstrated that NP(+) liposomes injected into the dermis produced an outstanding inflammatory reaction, showing the histopathological characteristics of an inoculation granuloma. Thus, positive charge would play an important role in the immunoadjuvant effect of liposomes by conferring them cytotoxic capacity.


Subject(s)
Adjuvants, Immunologic/chemistry , Cytotoxins/immunology , Liposomes/immunology , Macrophages, Peritoneal/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Cations/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Cytotoxins/administration & dosage , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Immunization , Injections, Intradermal , Liposomes/administration & dosage , Liposomes/chemistry , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred BALB C , Particle Size , Polymerization/radiation effects , Static Electricity , Ultraviolet Rays , Vaccines/chemistry , Vaccines/immunology , Vero Cells
8.
J Liposome Res ; 20(3): 191-201, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19845441

ABSTRACT

In this work, we analyzed protein interaction, cell toxicity, and biodistribution of liposome formulation for further possible applications as DNA vehicles in gene-therapy protocols. In relation to protein interaction, cationic liposomes showed the lowest protein interaction, but this parameter was incremented with DNA association. On the other hand, noncharged liposomes presented high protein interaction, but DNA association decreased this parameter. Protein interaction of polymeric liposomes did not change with DNA association. Cell toxicity of these three liposome formulations was low, cell death became present at concentrations higher than 0.5 mg/mL, and these concentrations were higher than those usually used in transfection assays. In the case of noncharged and polymeric liposomes, toxicity increased upon interaction with serum proteins. DNA/liposome-mediated tissue distribution was analyzed in Balb-c female mice. Results indicated that noncharged liposomes were able to deliver DNA to liver after intraperitoneal (i.p.) inoculation, while polymeric liposomes were able to deliver DNA to kidney by using the same inoculation route. Cationic liposomes were able to deliver DNA to a wide range of tissues by the i.p. route (e.g., liver, intestine, kidney, and blood). After subcutaneous inoculation, only cationic liposomes were able to deliver DNA to blood, but not the other two formulations within the detection limits of the method.


Subject(s)
DNA/administration & dosage , Liposomes/administration & dosage , Animals , DNA/blood , DNA/metabolism , Female , Injections, Intraperitoneal , Injections, Subcutaneous , Kidney/metabolism , Liposomes/metabolism , Liposomes/toxicity , Liver/metabolism , Mice , Mice, Inbred BALB C , Particle Size , Serum Albumin, Bovine/metabolism , Tissue Distribution , Transfection
9.
Acta Biochim Pol ; 56(2): 249-53, 2009.
Article in English | MEDLINE | ID: mdl-19421429

ABSTRACT

Murine melanoma B16F0 cells were transfected with SA:DPPC:DOPE (2:1:1 molar ratio) liposomes associated with a plasmid encoding murine IL-12. Stearylamine, a cationic lipid, showed a greater transfection efficiency compared to DOTAP-containing liposomes. The lipid:DNA ratio was 2:1 (w/w). Control groups were mock transfected or transfected with an empty plasmid (pNeo). pNeo or IL-12 transfected cells and controls were inoculated intradermically into the dorsal region of the foot or the lateral flank of C57BL6 mice. Results showed that IL-12 expression had a marked effect on in vivo growth of B16 melanoma tumors developed in both anatomic sites, significantly retarding their growth and prolonging host survival.


Subject(s)
Interleukin-12/genetics , Melanoma, Experimental/therapy , Transfection/methods , Amines , Analysis of Variance , Animals , Cell Line, Tumor , Cell Survival , Disease Progression , Fatty Acids, Monounsaturated , Genes, Reporter , Interleukin-12/metabolism , Liposomes , Melanoma, Experimental/metabolism , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Quaternary Ammonium Compounds , Tumor Burden
10.
Cancer Biol Ther ; 8(4): 375-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19197148

ABSTRACT

MC-C fibrosarcoma and B16F0 melanoma tumors were implanted intradermally in the dorsal region of the foot of mice. Tumor progression was compared to standard implantation in the flank. Although foot tumors only reached 13% (MC-C) and 25% (B16F0) of the mean volume of flank tumors, a more malignant phenotype in terms of histology and survival rate was observed in this type of tumors. Moreover, lung metastases were only detected in hosts bearing foot tumors, in contrast to MC-C and B16F0 populations with tumors growing in the flank. In addition, cellular influx and local immune reaction were higher in the dorsal region of the foot. According to our results, the dermis of the flank allows excessive tumor growth due to its low reactivity. Thus, differences in innate and adaptive immune effectors between the evaluated tumor microenvironments would account for the differences in tumor malignancy. Due to its striking differences with the standard flank inoculation, the tumor implantation model herein introduced could be a valuable tool to study the metastatic potential of different cell lines and the microenvironment components affecting tumor growth.


Subject(s)
Disease Models, Animal , Fibrosarcoma/pathology , Melanoma, Experimental/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Animals , Back/pathology , Cell Line, Tumor , Disease Progression , Fibrosarcoma/immunology , Fibrosarcoma/mortality , Foot/pathology , Immunity, Cellular , Immunity, Innate , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Mice , Neoplasm Transplantation/methods , Sheep , Survival Rate
11.
Biotechnol Lett ; 29(11): 1637-44, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17636387

ABSTRACT

Small unilamellar vesicles associated with plasmid DNA showed maximum association efficiency for a cationic mixture of egg phosphatidylcholine (EPC):1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE):di-1,2-dioleoyl-3-trimethyl ammonium propane (DOTAP) (16:8:1 molar ratio) [65%], followed by neutral lipids EPC:1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE):cholesterol (Chol) (2:2:1 molar ratio) [30%], and a polymerized formulation 1,2-bis(10,12-tricosadiynoyl)sn-glycero-3-phosphocholine (DC8,9PC):DMPE:Chol (2:2:1 molar ratio) [11%]. The hydrophobicity factor (HF) for these formulations followed the trend DC8,9PC:DMPE:CHOL < EPC:DMPE:Chol < EPC:DOPE DOTAP, and DNA association did not alter this trend. Results suggest that the higher the HF value, the more fluid the membrane and the higher the efficiency of DNA association. On the other hand, no differences were observed in cell toxicity with lipids up to 1 mg/ml in VERO cells.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Plasmids/genetics , Unilamellar Liposomes , Animals , Cell Survival , Chlorocebus aethiops , Hydrophobic and Hydrophilic Interactions , Unilamellar Liposomes/chemical synthesis , Unilamellar Liposomes/toxicity , Vero Cells
12.
Chem Phys Lipids ; 122(1-2): 191-203, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12598052

ABSTRACT

In order to evaluate liposomes as vehicle for oral vaccines the characterization and stability of polymerized and non-polymerized liposomes were examined. Mixtures of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3 phosphocholine) (DC8,9PC) with saturated 1,2-dimiristoyl-sn-glycero-3-phosphocholine in molar ratio 1:1 were used. Saturated and non-saturated lipids were combined to give a chemically modified membrane by UV polymerization derived from DC8,9PC. Characterization was carried out by electronic microscopy, differential scanning calorimetry (DSC) and by hydrophobicity factor (HF). The stability towards the digestive tract (including saliva): acidic solutions, bile and pancreatin are compared to buffer pH 7.4, measuring the release of Glucose-6-phosphate or bovine plasma albumin entrapment. The polymerized liposomes showed further augmentation of the HF and the size. DSC showed phase separation and lower Tt if compared to data obtained for DC8,9PC. The HF, as main factor is discussed in relation to in vitro stability, suggesting that polymerized and non-polymerized liposomes would serve effectively as an oral delivery vehicle.


Subject(s)
Acetylene/chemistry , Drug Carriers , Liposomes , Vaccines/administration & dosage , Administration, Oral , Calorimetry, Differential Scanning , Membrane Lipids/chemistry , Microscopy, Electron , Vaccines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...