Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Trop Life Sci Res ; 35(1): 139-160, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39262860

ABSTRACT

A large-scale rubber plantation in Southern Thailand is expected to capture a significant amount of carbon dioxide from emissions through carbon sinks in the vegetation and soil. The goal of this research is to create a carbon offset assessment for rubber plantations lasting for 30 years using a voluntary market contract approach. To evaluate the area of large-scale rubber plantations, this study evaluated major growing regions in five provinces in the middle-south region of Thailand (Nakhon Si Thammarat, Phatthalung, Songkhla, Satun and Trang) using an integrated RS-GIS technique that incorporated biomass allometric equations, soil series databases, and object-based classification. The classification of rubber plantation areas and the mapping of rubber stand ages were conducted to estimate the above-ground biomass of the rubber tree. Texture analysis was used in the rubber classification process, and normalised difference vegetation index (NDVI) was combined with texture analysis to separate vegetation areas from other land cover. Four groups of varying ages (1-6, 7-13, 14-20 and 21-30 years old) were evaluated for their capacity to generate carbon offsets. The equations of voluntary market contract revenue according to the contract method of the CCX were applied for this case study. This evaluation was used to estimate their annual value, total and net incomes in the carbon market price regarding the RGGI Allowance (RGA). Carbon offset income was then used to estimate the potential income (over a 30-year period) of the life of the contract. The results showed that the carbon stock potential of rubber plantations depended on the age of the trees and the soil carbon stock. The total carbon stock in the rubber plantations varied from 249.73 to 301.48 Mg C/ha (or equivalently 916.49 to 1,106.44 Mg CO2e/ha). Furthermore, the potential net income of the contract was estimated to be between USD5,378.32 and USD5,930.38 Mg CO2e/ha over a 30-year period according to the voluntary market contract revenue. These results suggest that the large agricultural land plot policy could create opportunities for carbon offsetting. The policy of large-scale rubber areas could be used as a tool and mechanism for farmers who are considering participating in carbon-crediting mechanisms. Then, farmers could use voluntary market contracts as a guide and foundation for their decision-making. The carbon offset credit strategy could assist Thailand in achieving its climate goals of transitioning to a low-carbon agriculture sector.

2.
Vet Sci ; 9(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36288145

ABSTRACT

This research examines the impact of adding dried coffee cherry pulp (CoCP) to goat feed on the digestibility of the feed, rumen fermentation, hematological, and nitrogen balance. A goat feeding experiment employed four male crossbreds (Thai Native × Anglo Nubian) aged 12 months and weighing 21.0 ± 0.2 kg each. The treatment was conceived as a 4 × 4 Latin square with four specific CoCP levels at 0, 100, 200, and 300 g/day. Dry matter intake (DMI), organic matter intake (OMI), and crude protein intake (CPI) were unaffected by the addition of CoCP. However, across treatment groups, there was a linear increase in ether extract intake (EEI) (p < 0.01), neutral detergent fiber intake (NDFI) (p = 0.06), and acid detergent fiber intake (ADFI) (p = 0.04), as well as a quadratic effect on DMI% BW (p = 0.04). The findings showed that rumen temperature, pH, ammonia-nitrogen, or pack cell volume did not change with CoCP supplementation. Total volatile fatty acid showed linear effects on acetate (p = 0.03) and was quadratically affected by propionate concentration (p = 0.02), acetate to propionate ratio (p = 0.01), acetic plus butyric to propionic acid ratio (p = 0.01), and methane estimation (p = 0.01). With increased CoCP supplementation, there was a linear decrease in protozoa count by about 20.2% as the amount of CoCP supplemented increased (p = 0.06). CoCP supplementation in animal feed resulted in a linear decrease in urinary nitrogen (p = 0.02) and a quadratic effect on absorbed nitrogen (p = 0.08) among treatment groups, with greater N utilization values found in goats fed 200 g/d CoCP. In light of this, supplementing CoCP into animal feed may improve animal digestion and rumen fermentation effectiveness while having no effect on feed intake, rumen microbes, or blood metabolites.

3.
Animals (Basel) ; 12(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35804536

ABSTRACT

The objective of this study was to see how dried Mitragyna speciosa Korth leaves (DKTL) affected growth, hematological parameters, carcass characteristics, muscle chemical composition, and fatty acid profile in finishing goats. In a randomized complete block design, twenty crossbred males (Thai Native x Boer) weaned goats (17.70 ± 2.50 kg of initial body weight (BW)) were provided to the experimental animals (5 goats per treatment) for 90 days. Individual dietary treatments of 0, 2.22, 4.44, and 6.66 g/d of DKTL on a dry matter basis were given to the goats. The diets were provided twice daily as total mixed rations ad libitum. In comparison to the control diet, DKTL supplementation had no effect on BW, average daily gain (ADG), feed conversion ratio (FCR), carcass composition, meat pH, or meat color (p > 0.05). After DKTL treatment, the hot carcass weight, longissimus muscle area, oleic acid (C18:1n9), monounsaturated fatty acid (MUFA), and protein content increased, but saturated fatty acids (SFA) and ether extract decreased (p < 0.05). To summarize, DKTL supplementation can improve goat meat quality.

4.
PLoS One ; 7(6): e38883, 2012.
Article in English | MEDLINE | ID: mdl-22719974

ABSTRACT

Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.


Subject(s)
Carbon/metabolism , Malus/metabolism , Biomass , China
SELECTION OF CITATIONS
SEARCH DETAIL