Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871677

ABSTRACT

Nanotechnology has revolutionized the fabrication of hybrid species with tailored functionalities. A milestone in this field is the deoxyribonucleic acid (DNA) conjugation of nanoparticles, introduced almost 30 years ago, which typically exploits the affinity between thiol groups and metallic surfaces. Over the last decades, developments in colloidal research have enabled the synthesis of an assortment of nonmetallic structures, such as high-index dielectric nanoparticles, with unique properties not previously accessible with traditional metallic nanoparticles. However, to stabilize, integrate, and provide further functionality to nonmetallic nanoparticles, reliable techniques for their functionalization with DNA will be crucial. Here, we combine well-established dibenzylcyclooctyne-azide click-chemistry with a simple freeze-thaw method to achieve the functionalization of silica and silicon nanoparticles, which form exceptionally stable colloids with a high DNA surface density of ∼0.2 molecules/nm2. Furthermore, we demonstrate that these functionalized colloids can be self-assembled into high-index dielectric dimers with a yield of over 50% via the use of DNA origami. Finally, we extend this method to functionalize other important nanomaterials, including oxides, polymers, core-shell, and metal nanostructures. Our results indicate that the method presented herein serves as a crucial complement to conventional thiol functionalization chemistry and thus greatly expands the toolbox of DNA-functionalized nanoparticles currently available.

2.
Small Methods ; 7(7): e2201565, 2023 07.
Article in English | MEDLINE | ID: mdl-37132097

ABSTRACT

Fluorescence Resonance Energy Transfer (FRET)-based approaches are unique tools for sensing the immediate surroundings and interactions of (bio)molecules. FRET imaging and Fluorescence Lifetime Imaging Microscopy (FLIM) enable the visualization of the spatial distribution of molecular interactions and functional states. However, conventional FLIM and FRET imaging provide average information over an ensemble of molecules within a diffraction-limited volume, which limits the spatial information, accuracy, and dynamic range of the observed signals. Here, an approach to obtain super-resolved FRET imaging based on single-molecule localization microscopy using an early prototype of a commercial time-resolved confocal microscope is demonstrated. DNA Points Accumulation for Imaging in Nanoscale Topography with fluorogenic probes provides a suitable combination of background reduction and binding kinetics compatible with the scanning speed of usual confocal microscopes. A single laser is used to excite the donor, a broad detection band is employed to retrieve both donor and acceptor emission, and FRET events are detected from lifetime information.


Subject(s)
DNA , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , DNA/chemistry , Microscopy, Confocal , Single Molecule Imaging
3.
Biosens Bioelectron ; 224: 115053, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36608362

ABSTRACT

MiRNAs hold great potential as biomarkers for the early detection and monitoring of diseases based on their differential expression profiles. Therefore, the sensitive, specific and accurate detection of miRNAs represents an emerging new tool to improve diagnosis and treatment of several diseases, cancer in particular. DNA origami-based miRNA detection is particularly advantageous as it allows to incorporate multiple attachment sites to capture different target miRNAs at the nanoscale. In this work, we present a DNA origami nanoarray system providing distance-dependent recognition of miRNAs by applying super-resolution microscopy technique; DNA-PAINT (point accumulation for imaging in nanoscale topography). The sensor can detect up to 4 miRNAs either separately or in combination based on the relative distance to the boundary markers on the structure using a single imager strand. The detection is highly sensitive, with a limit of detection down to the low femtomolar range (11 fM - 388 fM) and has a large dynamic range up to 10 nM without need for amplification. Moreover, our detection system can discriminate single base mismatches with low false positive rates. Using our strategy, we demonstrate the detection of endogenous miRNAs from cell extracts of cancer cell lines and plasma from breast cancer patients. Overall, we developed an ultrasensitive and amplification-free, DNA-PAINT imaging-based miRNA detection method using DNA origami nanoarray system for the detection of breast-cancer associated miRNAs which potentially provides a sensitive and accurate alternative to the current multiplexed diagnostic technologies.


Subject(s)
Biosensing Techniques , Breast Neoplasms , MicroRNAs , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , DNA/genetics , DNA/chemistry , MicroRNAs/analysis , MicroRNAs/genetics , Microscopy, Fluorescence/methods , Multiplex Polymerase Chain Reaction
4.
ACS Nano ; 16(10): 16924-16931, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36065997

ABSTRACT

An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.


Subject(s)
Nanoparticles , Nanotechnology , Nanotechnology/methods , DNA/chemistry , Oligonucleotides , Fluorescent Dyes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...