Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 12(43): 48598-48613, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32960559

ABSTRACT

Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.

2.
Chem Commun (Camb) ; 55(59): 8607-8610, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31281905

ABSTRACT

By using high-resolution electron energy loss spectroscopy and density functional theory, we have studied the interaction of carbon monoxide with a defected graphene sheet. Both experiments and theory indicate that unsaturated C atoms at vacancies are able to capture carbon monoxide at room temperature. Definitely, the sequestration of carbon monoxide at carbon vacancies implies the formation of a weak C-O-C bond, evidenced by its peculiar vibrational energy of 150 meV (1209 cm-1). We also show that, by tuning the density of vacancies, it is possible to obtain a selective CO adsorption at vacancies without intercalation under the graphene cover. Captured CO molecules are stably adsorbed up to a temperature of 500 K. These findings represent the initial step toward the development of processes for the graphene-mediated partial sequestration and selective oxidation of CO.

3.
Nanoscale ; 10(46): 21918-21927, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30457626

ABSTRACT

By means of momentum-resolved electron energy loss spectroscopy (EELS) coupled with scanning transmission electron microscopy, we have studied the dispersion relation of interband plasmonic modes in the ultraviolet in black phosphorus. We find that the dispersion of the interband plasmons is anisotropic. Experimental results are reproduced by density functional theory, by taking into account both the anisotropy of the single-particle response function, arising from the anisotropic band structure, and the damping. Moreover, our theoretical model also indicates the presence of low-energy excitations in the near-infrared that are selectively active in the armchair direction, whose existence has been experimentally validated by high-resolution EELS (HREELS) in reflection mode.

4.
Phys Rev Lett ; 121(8): 086804, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192568

ABSTRACT

Transition-metal dichalcogenides showing type-II Dirac fermions are emerging as innovative materials for nanoelectronics. However, their excitation spectrum is mostly unexplored yet. By means of high-resolution electron energy loss spectroscopy and density functional theory, here, we identify the collective excitations of type-II Dirac fermions (3D Dirac plasmons) in PtTe_{2} single crystals. The observed plasmon energy in the long-wavelength limit is ∼0.5 eV, which makes PtTe_{2} suitable for near-infrared optoelectronic applications. We also demonstrate that interband transitions between the two Dirac bands in PtTe_{2} give rise to additional excitations at ∼1 and ∼1.4 eV. Our results are crucial to bringing to fruition type-II Dirac semimetals in optoelectronics.

5.
Nanomaterials (Basel) ; 7(11)2017 Nov 05.
Article in English | MEDLINE | ID: mdl-29113090

ABSTRACT

Among the various two-dimensional semiconductors, indium selenide has recently triggered the interest of scientific community, due to its band gap matching the visible region of the electromagnetic spectrum, with subsequent potential applications in optoelectronics and especially in photodetection. In this feature article, we discuss the main issues in the synthesis, the ambient stability and the application capabilities of this novel class of two-dimensional semiconductors, by evidencing open challenges and pitfalls. In particular, we evidence how the growth of single crystals with reduced amount of Se vacancies is crucial in the road map for the exploitation of indium selenide in technology through ambient-stable nanodevices with outstanding values of both mobility of charge carriers and ON/OFF ratio. The surface chemical reactivity of the InSe surface, as well as applications in the fields of broadband photodetection, flexible electronics and solar energy conversion are also discussed.

6.
ACS Nano ; 10(4): 4543-9, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27054462

ABSTRACT

By means of a combination of surface-science spectroscopies and theory, we investigate the mechanisms ruling the catalytic role of epitaxial graphene (Gr) grown on transition-metal substrates for the production of hydrogen from water. Water decomposition at the Gr/metal interface at room temperature provides a hydrogenated Gr sheet, which is buckled and decoupled from the metal substrate. We evaluate the performance of Gr/metal interface as a hydrogen storage medium, with a storage density in the Gr sheet comparable with state-of-the-art materials (1.42 wt %). Moreover, thermal programmed reaction experiments show that molecular hydrogen can be released upon heating the water-exposed Gr/metal interface above 400 K. The Gr hydro/dehydrogenation process might be exploited for an effective and eco-friendly device to produce (and store) hydrogen from water, i.e., starting from an almost unlimited source.

7.
Phys Rev Lett ; 115(7): 075504, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26317732

ABSTRACT

In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.

8.
Nanoscale ; 6(19): 10927-40, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25130215

ABSTRACT

Plasmons in graphene have unusual properties and offer promising prospects for plasmonic applications covering a wide frequency range, ranging from terahertz up to the visible. Plasmon modes have been recently studied in both free-standing and supported graphene. Here, we review plasmons in graphene with particular emphasis on plasmonic excitations in epitaxial graphene and on the influence of the underlying substrate on the screening processes. Although the theoretical comprehension of plasmons in supported graphene is still incomplete, several experimental results provide clues regarding the nature of plasmonic excitations in graphene on metals and semiconductors. Plasmon in graphene can be tuned by chemical doping and gating potentials. We show through selected examples that the adsorbates can be used to tune the plasmon frequency, while the intercalation of chemical species allows the decoupling of the graphene sheet from the substrate to recover the plasmon dispersion of pristine graphene. Finally, we also report intriguing effects due to many-body interaction, such as the excitations generated by electron-electron coupling (magnetoplasmons) and the composite modes arising from the coupling of plasmons with phonons and with charge carriers.


Subject(s)
Graphite/chemistry , Models, Chemical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Surface Plasmon Resonance/methods , Surface Plasmon Resonance/trends , Forecasting , Light , Scattering, Radiation
9.
J Chem Phys ; 139(6): 064704, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23947877

ABSTRACT

Motivated by the existence of several recent works claiming for unusual hydrogen bonds in water adsorbed or confined in carbon nanostructures, we have analyzed the nature of a sharp O-H stretching at 3700 cm(-1) in H2O/graphene recorded in vibrational measurements. The interpretation of such mode is rather controversial. On the basis of a careful inspection of our spectroscopic data and of literature, we suggest that the interpretation of this feature as a fingerprint of surface hydrophobicity, electronic effects or disorder is astray. Instead, it merely arises from interface effects.

10.
Nanoscale ; 5(17): 8215-20, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23852367

ABSTRACT

Plasmonic excitations in pristine and air-exposed graphene-Ru and graphene-Pt contacts have been investigated by using high-resolution electron energy loss spectroscopy. Loss measurements show that the effects of air exposure are very different in these two systems. While in graphene-Ru contacts, plasmons are completely quenched, plasmons in the graphene-Pt interface show only a frequency shift together with an overall intensity attenuation. These results pose significant questions as regards the stability in an ambient air atmosphere of graphene-based plasmonic devices and indicate a suitable choice of graphene-metal contacts.

11.
Phys Chem Chem Phys ; 15(27): 11356-61, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23736309

ABSTRACT

High-resolution electron energy loss spectroscopy has been used to study the electronic response of periodically rippled monolayer graphene grown on Ru(0001). A plasmonic mode, assigned to the π plasmon, has been observed at around 6 eV. The dispersion curve of this collective mode indicates plasmon confinement within the hills of the ripples. Moreover, we found that the corrugation of the graphene sheet also significantly affects the damping processes of the π plasmon.

12.
J Phys Condens Matter ; 24(10): 104025, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22354008

ABSTRACT

High-resolution electron energy loss spectroscopy has been used to probe phonon dispersion in quasi-freestanding graphene epitaxially grown on Pt(111). Loss spectra clearly show different dispersing features related to both acoustic and optical phonons. The present results have been compared with graphene systems which strongly interact with the substrate, i.e. the nearly-flat monolayer graphene (MLG)/Ni(111) and the corrugated MLG/Ru(0001). We found that the phonon dispersion of graphene/Pt(111) reproduces well the behavior of pristine graphite. This could be taken as an indication of the negligible interaction between the graphene sheet and the underlying Pt substrate. The softening of out-of-plane modes observed for interacting graphene/metal interfaces does not occur for the nearly-free-standing graphene/Pt(111).

13.
Chemphyschem ; 9(8): 1189-94, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18442033

ABSTRACT

The coadsorption of Na with CO and O on Ni(111) is studied by high-resolution electron energy loss spectroscopy. Experimental evidence for a very short-range interaction between Na and coadsorbates is reported, in contrast with recent theoretical predictions overestimating nonlocal alkali-induced effects. Loss spectra show distinct features, as a consequence of different local [CO]:[Na] and [O]:[Na] stoichiometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...