Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 795: 148743, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34328936

ABSTRACT

This study presents the findings from several field campaigns carried out in Lake Idro (Northern Italy), a deep (124 m) meromictic-subalpine lake, whose water column is subdivided in a mixolimnion (~0-40 m) and a monimolimnion (~40-124 m). Hydrochemical data highlight two main peculiarities characterizing the Lake Idro meromixis: a) presence of a high manganese/iron ratio (up to 20 mol/mol), b) absence of a clear chemocline between the two main layers. The high manganese content contributed to the formation of a stable manganese dominated deep turbid stratum (40-65 m), enveloping the redoxcline (~45-55 m) in the upper monimolimnion. The presence of this turbid stratum in Lake Idro is described for the first time in this study. The paper examines the distribution of dissolved and particulate forms of transition metals (Mn and Fe), alkaline earth metals (Ca and Mg), and other macro-constituents or nutrients (S, P, NO3-N, NH4-N), discussing their behavior over the redoxcline, where the main transition processes occur. Field measurements and theoretical considerations suggest that the deep turbid stratum is formed by a complex mixture of manganese and iron compounds with a prevalence of Mn(II)/Mn(III) in different forms including dissolved, colloidal, and fine particles, that give to the turbid stratum a white-pink opalescent coloration. The bacteria populations show a clear stratification with the upper aerobic layer dominated by the heterotrophic Flavobacterium sp., the turbid stratum hosting a specific microbiological pool, dominated by Caldimonas sp., and the deeper anaerobic layer dominated by the sulfur-oxidizing and denitrifier Sulfuricurvum sp. The occurrence in August 2010 of an anomalous lake surface coloration lasting about four weeks and developing from milky white-green to red-brown suggests that the upper zone of the turbid stratum could be eroded during intense weather-hydrological conditions with the final red-brown coloration resulting from the oxidation of Mn(II)/Mn(III) to Mn(IV) compounds.


Subject(s)
Lakes , Manganese , Bacteria , Oxidation-Reduction , Sulfur
2.
Polymers (Basel) ; 13(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672105

ABSTRACT

Poly(3,4-ethylenedioxythiophene) (PEDOT) plays a key role in the field of electrically conducting materials, despite its poor solubility and processability. Various molecules and polymers carrying sulfonic groups can be used to enhance PEDOT's electrical conductivity. Among all, sulfonated polyarylether sulfone (SPAES), prepared via homogenous synthesis with controlled degree of sulfonation (DS), is a very promising PEDOT doping agent. In this work, PEDOT was synthesized via high-concentration solvent-based emulsion polymerization using 1% w/w of SPAES with different DS as dopant. It was found that the PEDOT:SPAESs obtained have improved solubility in the chosen reaction solvents, i.e., N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone and, for the first time, the role of doping agent, DS and polymerization solvents were investigated analyzing the electrical properties of SPAESs and PEDOT:SPAES samples and studying the different morphology of PEDOT-based thin films. High DS of SPAES, i.e., 2.4 meq R-SO3-× g-1 of polymer, proved crucial in enhancing PEDOT's electrical conductivity. Furthermore, the DMSO capability to favor PEDOT and SPAES chains rearrangement and interaction results in the formation of a polymer film with more homogenous morphology and higher conductivity than the ones prepared from DMAc, DMF, and NMP.

SELECTION OF CITATIONS
SEARCH DETAIL
...