Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 33(5): 747-54, 2015 May.
Article in English | MEDLINE | ID: mdl-25640328

ABSTRACT

Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics, and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc.


Subject(s)
Extracellular Matrix/metabolism , Hypoxia/metabolism , Intervertebral Disc/metabolism , Animals , Cattle , Cells, Cultured , Sepharose , Transforming Growth Factor beta3
2.
J Bone Miner Res ; 29(12): 2610-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24898323

ABSTRACT

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease characterized by deficient α-L-iduronidase activity, leading to the accumulation of poorly degraded glycosaminoglycans (GAGs). Children with MPS I exhibit high incidence of spine disease, including accelerated disc degeneration and vertebral dysplasia, which in turn lead to spinal cord compression and kyphoscoliosis. In this study we investigated the efficacy of neonatal enzyme replacement therapy (ERT), alone or in combination with oral simvastatin (ERT + SIM) for attenuating cervical spine disease progression in MPS I, using a canine model. Four groups were studied: normal controls; MPS I untreated; MPS I ERT-treated; and MPS I ERT + SIM-treated. Animals were euthanized at age 1 year. Intervertebral disc condition and spinal cord compression were evaluated from magnetic resonance imaging (MRI) images and plain radiographs, vertebral bone condition and odontoid hypoplasia were evaluated using micro-computed tomography (µCT), and epiphyseal cartilage to bone conversion was evaluated histologically. Untreated MPS I animals exhibited more advanced disc degeneration and more severe spinal cord compression than normal animals. Both treatment groups resulted in partial preservation of disc condition and cord compression, with ERT + SIM not significantly better than ERT alone. Untreated MPS I animals had significantly lower vertebral trabecular bone volume and mineral density, whereas ERT treatment resulted in partial preservation of these properties. ERT + SIM treatment demonstrated similar, but not greater, efficacy. Both treatment groups partially normalized endochondral ossification in the vertebral epiphyses (as indicated by absence of persistent growth plate cartilage), and odontoid process size and morphology. These results indicate that ERT begun from a very early age attenuates the severity of cervical spine disease in MPS I, particularly for the vertebral bone and odontoid process, and that additional treatment with simvastatin does not provide a significant additional benefit over ERT alone.


Subject(s)
Dog Diseases , Enzyme Replacement Therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Iduronidase/therapeutic use , Intervertebral Disc Degeneration , Mucopolysaccharidosis I , Simvastatin/pharmacology , Animals , Disease Models, Animal , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dog Diseases/pathology , Dogs , Female , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/veterinary , Male , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/metabolism , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/veterinary
3.
Acta Biomater ; 10(6): 2473-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24560621

ABSTRACT

Intervertebral disc degeneration has been implicated in the etiology of low back pain; however, the current surgical strategies for treating symptomatic disc disease are limited. A variety of materials have been developed to replace disc components, including the nucleus pulposus (NP), the annulus fibrosus (AF) and their combination into disc-like engineered constructs. We have previously shown that layers of electrospun poly(ε-caprolactone) scaffold, mimicking the hierarchical organization of the native AF, can achieve functional parity with native tissue. Likewise, we have combined these structures with cell-seeded hydrogels (as an NP replacement) to form disc-like angle-ply structures (DAPS). The objective of this study was to develop a model for the evaluation of DAPS in vivo. Through a series of studies, we developed a surgical approach to replace the rat caudal disc with an acellular DAPS and then stabilized the motion segment via external fixation. We then optimized cell infiltration into DAPS by including sacrificial poly(ethylene oxide) layers interspersed throughout the angle-ply structure. Our findings illustrate that DAPS are stable in the caudal spine, are infiltrated by cells from the peri-implant space and that infiltration is expedited by providing additional routes for cell migration. These findings establish a new in vivo platform in which to evaluate and optimize the design of functional disc replacements.


Subject(s)
Intervertebral Disc/surgery , Models, Animal , Nanofibers , Tissue Engineering , Animals , Male , Rats , Rats, Sprague-Dawley
4.
Tissue Eng Part A ; 20(13-14): 1841-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24410394

ABSTRACT

Intervertebral disc degeneration is implicated as a major cause of low-back pain. There is a pressing need for new regenerative therapies for disc degeneration that restore native tissue structure and mechanical function. To that end we investigated the therapeutic potential of an injectable, triple-interpenetrating-network hydrogel comprised of dextran, chitosan, and teleostean, for functional regeneration of the nucleus pulposus (NP) of the intervertebral disc in a series of biomechanical, cytotoxicity, and tissue engineering studies. Biomechanical properties were evaluated as a function of gelation time, with the hydrogel reaching ∼90% of steady-state aggregate modulus within 10 h. Hydrogel mechanical properties evaluated in confined and unconfined compression were comparable to native human NP properties. To confirm containment within the disc under physiological loading, toluidine-blue-labeled hydrogel was injected into human cadaveric spine segments after creation of a nucleotomy defect, and the segments were subjected to 10,000 cycles of loading. Gross analysis demonstrated no implant extrusion, and further, that the hydrogel interdigitated well with native NP. Constructs were next surface-seeded with NP cells and cultured for 14 days, confirming lack of hydrogel cytotoxicity, with the hydrogel maintaining NP cell viability and promoting proliferation. Next, to evaluate the potential of the hydrogel to support cell-mediated matrix production, constructs were seeded with mesenchymal stem cells (MSCs) and cultured under prochondrogenic conditions for up to 42 days. Importantly, the hydrogel maintained MSC viability and promoted proliferation, as evidenced by increasing DNA content with culture duration. MSCs differentiated along a chondrogenic lineage, evidenced by upregulation of aggrecan and collagen II mRNA, and increased GAG and collagen content, and mechanical properties with increasing culture duration. Collectively, these results establish the therapeutic potential of this novel hydrogel for functional regeneration of the NP. Future work will confirm the ability of this hydrogel to normalize the mechanical stability of cadaveric human motion segments, and advance the material toward human translation using preclinical large-animal models.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Intervertebral Disc/physiology , Materials Testing , Regeneration/drug effects , Stem Cells/cytology , Animals , Cattle , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Cross-Linking Reagents/pharmacology , Culture Media/pharmacology , Gene Expression Regulation/drug effects , Humans , Injections , Intervertebral Disc/drug effects , Kinetics , Mechanical Phenomena/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stress, Mechanical
5.
Bone ; 55(1): 78-83, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23563357

ABSTRACT

INTRODUCTION: Mucopolysaccharidosis I (MPS I) is a lysosomal storage disorder characterized by deficient α-l-iduronidase activity leading to accumulation of poorly degraded dermatan and heparan sulfate glycosaminoglycans (GAGs). MPS I is associated with significant cervical spine disease, including vertebral dysplasia, odontoid hypoplasia, and accelerated disk degeneration, leading to spinal cord compression and kypho-scoliosis. The objective of this study was to establish the nature and rate of progression of cervical vertebral bone disease in MPS I using a canine model. METHODS: C2 vertebrae were obtained post-mortem from normal and MPS I dogs at 3, 6 and 12 months-of-age. Morphometric parameters and mineral density for the vertebral trabecular bone and odontoid process were determined using micro-computed tomography. Vertebrae were then processed for paraffin histology, and cartilage area in both the vertebral epiphyses and odontoid process were quantified. RESULTS: Vertebral bodies of MPS I dogs had lower trabecular bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and bone mineral density (BMD) than normals at all ages. For MPS I dogs, BV/TV, Tb.Th and BMD plateaued after 6 months-of-age. The odontoid process appeared morphologically abnormal for MPS I dogs at 6 and 12 months-of-age, although BV/TV and BMD were not significantly different from normals. MPS I dogs had significantly more cartilage in the vertebral epiphyses at both 3 and 6 months-of-age. At 12 months-of-age, epiphyseal growth plates in normal dogs were absent, but in MPS I dogs they persisted. CONCLUSIONS: In this study we report reduced trabecular bone content and mineralization, and delayed cartilage to bone conversion in MPS I dogs from 3 months-of-age, which may increase vertebral fracture risk and contribute to progressive deformity. The abnormalities of the odontoid process we describe likely contribute to increased incidence of atlanto-axial subluxation observed clinically. Therapeutic strategies that enhance bone formation may decrease incidence of spine disease in MPS I patients.


Subject(s)
Cervical Vertebrae/pathology , Disease Progression , Mucopolysaccharidosis I/pathology , Spinal Diseases/pathology , Animals , Animals, Newborn , Cartilage/diagnostic imaging , Cartilage/pathology , Cervical Vertebrae/diagnostic imaging , Dogs , Mucopolysaccharidosis I/diagnostic imaging , Odontoid Process/diagnostic imaging , Odontoid Process/pathology , Spinal Diseases/diagnostic imaging , Tomography, X-Ray Computed
6.
Arthritis Res Ther ; 14(4): R179, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863285

ABSTRACT

INTRODUCTION: Inflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1ß) mediated degradative changes in the nucleus pulposus (NP), using an in vitro model. METHODS: IL-1ra was encapsulated in PLGA microspheres and release kinetics were determined over 35 days. NP agarose constructs were cultured to functional maturity and treated with combinations of IL-1ß and media conditioned with IL-1ra released from microspheres at intervals for up to 20 days. Construct mechanical properties, glycosaminoglycan content, nitrite production and mRNA expression of catabolic mediators were compared to properties for untreated constructs using unpaired Student's t-tests. RESULTS: IL-1ra release kinetics were characterized by an initial burst release reducing to a linear release over the first 10 days. IL-1ra released from microspheres attenuated the degradative effects of IL-1ß as defined by mechanical properties, glycosaminoglycans (GAG) content, nitric oxide production and mRNA expression of inflammatory mediators for 7 days, and continued to limit functional degradation for up to 20 days. CONCLUSIONS: In this study, we successfully demonstrated that IL-1ra microspheres can attenuate the degradative effects of IL-1ß on the NP for extended periods. This therapeutic strategy may be appropriate for treating early-stage, cytokine-mediated disc degeneration. Ongoing studies are focusing on testing IL-1ra microspheres in an in vivo model of disc degeneration, as a prelude to clinical translation.


Subject(s)
Drug Delivery Systems/methods , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin-1beta/toxicity , Intervertebral Disc Degeneration/prevention & control , Lactic Acid/administration & dosage , Microspheres , Polyglycolic Acid/administration & dosage , Cells, Cultured , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacokinetics , Intervertebral Disc Degeneration/chemically induced , Intervertebral Disc Degeneration/metabolism , Lactic Acid/pharmacokinetics , Polyglycolic Acid/pharmacokinetics , Polylactic Acid-Polyglycolic Acid Copolymer
7.
Eur Cell Mater ; 22: 291-301, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-22102324

ABSTRACT

Intervertebral disc degeneration is characterized by a cascade of cellular, biochemical and structural changes that may lead to functional impairment and low back pain. Interleukin-1 beta (IL-1ß) is strongly implicated in the etiology of disc degeneration, however there is currently no direct evidence linking IL-1ß upregulation to downstream biomechanical changes. The objective of this study was to evaluate long-term agarose culture of nucleus pulposus (NP) cells as a potential in vitro model system to investigate this. Bovine NP cells were cultured in agarose for 49 days in a defined medium containing transforming growth factor-beta 3, after which both mechanical properties and composition were evaluated and compared to native NP. The mRNA levels of NP cell markers were compared to those of freshly isolated NP cells. Glycosaminoglycan (GAG) content, aggregate modulus and hydraulic permeability of mature constructs were similar to native NP, and aggrecan and SOX9 mRNA levels were not significantly different from freshly isolated cells. To investigate direct links between IL-1ß and biomechanical changes, mature agarose constructs were treated with IL-1ß, and effects on biomechanical properties, extracellular matrix composition and mRNA levels were quantified. IL-1ß treatment resulted in upregulation of a disintegrin and metalloproteinase with thrombospondin motifs 4, matrix metalloproteinase-13 and inducible nitric oxide sythase, decreased GAG and modulus, and increased permeability. To evaluate the model as a test platform for therapeutic intervention, co-treatment with IL-1ß and IL-1 receptor antagonist (IL-1ra) was evaluated. IL-1ra significantly attenuated degradative changes induced by IL-1ß. These results suggest that this in vitro model represents a reliable and cost-effective platform for evaluating new therapies for disc degeneration.


Subject(s)
Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Interleukin-1beta/pharmacology , Intervertebral Disc/cytology , Aggrecans/metabolism , Animals , Cattle , Cell Culture Techniques , Cell Membrane/metabolism , Cell Membrane/physiology , Cells, Cultured , Elasticity , Extracellular Matrix Proteins/genetics , Gene Expression/drug effects , Glycosaminoglycans/metabolism , Permeability , Receptors, Interleukin-1/agonists , Sepharose , Water/metabolism
8.
Article in English | MEDLINE | ID: mdl-19840861

ABSTRACT

This study examines the role of a myoplasmic protein, parvalbumin, in enhancing muscle relaxation by fishes. Parvalbumin is thought to bind free Ca(2+) during muscle contraction, thereby reducing intracellular [Ca(2+)] in muscle and speeding muscle relaxation by reducing Ca(2+) availability to the troponin complex. We hypothesized that parvalbumin expression is ubiquitously expressed in fish muscle and that its expression levels and role in muscle relaxation would depend on the activity level and the thermal environment of a given fish species. Muscle contractile properties and patterns of parvalbumin expression were examined in pinfish (Lagodon rhomboides) and two species of toadfish (gulf toadfish, Opsanus beta, and oyster toadfish, Opsanus tau). Unlike another sparid (sheepshead), the active swimming pinfish does not express parvalbumin in its slow-twitch red muscle. However, both sheepshead and pinfish have relatively high levels of parvalbumin in their myotomal white muscle. Gulf toadfish from the Gulf of Mexico expressed higher levels of parvalbumin and had faster muscle relaxation rates than oyster toadfish from more northern latitudes. The faster muscle of gulf toadfish also expressed relatively more of one parvalbumin isoform, suggesting differences in the binding properties of the two isoforms observed in toadfish swimming muscle. Parvalbumin expression and its role in muscle relaxation appear to vary widely in fishes. There are many control points involved in the calcium transient of contracting muscle, leading to a variety of species-specific solutions to the modulation of muscle relaxation.


Subject(s)
Batrachoidiformes/metabolism , Parvalbumins/metabolism , Perciformes/metabolism , Air Sacs/metabolism , Air Sacs/physiology , Animals , Isometric Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Parvalbumins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...