Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Oncog ; 29(2): 65-75, 2024.
Article in English | MEDLINE | ID: mdl-38505882

ABSTRACT

Radiomics, the extraction and analysis of quantitative features from medical images, has emerged as a promising field in radiology with the potential to revolutionize the diagnosis and management of renal lesions. This comprehensive review explores the radiomics workflow, including image acquisition, feature extraction, selection, and classification, and highlights its application in differentiating between benign and malignant renal lesions. The integration of radiomics with artificial intelligence (AI) techniques, such as machine learning and deep learning, can help patients' management and allow the planning of the appropriate treatments. AI models have shown remarkable accuracy in predicting tumor aggressiveness, treatment response, and patient outcomes. This review provides insights into the current state of radiomics and AI in renal lesion assessment and outlines future directions for research in this rapidly evolving field.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Radiomics , Machine Learning , Forecasting
2.
Cancers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686619

ABSTRACT

Lung cancer has one of the worst morbidity and fatality rates of any malignant tumour. Most lung cancers are discovered in the middle and late stages of the disease, when treatment choices are limited, and patients' survival rate is low. The aim of lung cancer screening is the identification of lung malignancies in the early stage of the disease, when more options for effective treatments are available, to improve the patients' outcomes. The desire to improve the efficacy and efficiency of clinical care continues to drive multiple innovations into practice for better patient management, and in this context, artificial intelligence (AI) plays a key role. AI may have a role in each process of the lung cancer screening workflow. First, in the acquisition of low-dose computed tomography for screening programs, AI-based reconstruction allows a further dose reduction, while still maintaining an optimal image quality. AI can help the personalization of screening programs through risk stratification based on the collection and analysis of a huge amount of imaging and clinical data. A computer-aided detection (CAD) system provides automatic detection of potential lung nodules with high sensitivity, working as a concurrent or second reader and reducing the time needed for image interpretation. Once a nodule has been detected, it should be characterized as benign or malignant. Two AI-based approaches are available to perform this task: the first one is represented by automatic segmentation with a consequent assessment of the lesion size, volume, and densitometric features; the second consists of segmentation first, followed by radiomic features extraction to characterize the whole abnormalities providing the so-called "virtual biopsy". This narrative review aims to provide an overview of all possible AI applications in lung cancer screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...