Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771049

ABSTRACT

High dietary intake of ß-cryptoxanthin (BCX, an oxygenated provitamin A carotenoid) is associated with a lower risk of lung disease in smokers. BCX can be cleaved by ß-carotene-15,15'-oxygenase (BCO1) and ß-carotene-9',10'-oxygenase (BCO2) to produce retinol and apo-10'-carotenoids. We investigated whether BCX has protective effects against cigarette smoke (CS)-induced lung injury, dependent or independent of BCO1/BCO2 and their metabolites. Both BCO1-/-/BCO2-/- double knockout mice (DKO) and wild type (WT) littermates were supplemented with BCX 14 days and then exposed to CS for an additional 14 days. CS exposure significantly induced macrophage and neutrophil infiltration in the lung tissues of mice, regardless of genotypes, compared to the non-exposed littermates. BCX treatment significantly inhibited CS-induced inflammatory cell infiltration, hyperplasia in the bronchial epithelium, and enlarged alveolar airspaces in both WT and DKO mice, regardless of sex. The protective effects of BCX were associated with lower expression of IL-6, TNF-α, and matrix metalloproteinases-2 and -9. BCX treatment led to a significant increase in hepatic BCX levels in DKO mice, but not in WT mice, which had significant increase in hepatic retinol concentration. No apo-10'-carotenoids were detected in any of the groups. In vitro BCX, at comparable doses of 3-OH-ß-apo-10'-carotenal, was effective at inhibiting the lipopolysaccharide-induced inflammatory response in a human bronchial epithelial cell line. These data indicate that BCX can serve as an effective protective agent against CS-induced lung lesions in the absence of carotenoid cleavage enzymes.


Subject(s)
Dioxygenases , Tobacco Products , Mice , Animals , Humans , beta Carotene/metabolism , Beta-Cryptoxanthin/pharmacology , Vitamin A , Dioxygenases/metabolism , beta-Carotene 15,15'-Monooxygenase/genetics , beta-Carotene 15,15'-Monooxygenase/metabolism , Carotenoids/pharmacology , Carotenoids/metabolism , Oxygenases , Lung/metabolism , Mice, Knockout
2.
Cancer Cell ; 38(4): 567-583.e11, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32976774

ABSTRACT

Oncogenic transformation alters lipid metabolism to sustain tumor growth. We define a mechanism by which cholesterol metabolism controls the development and differentiation of pancreatic ductal adenocarcinoma (PDAC). Disruption of distal cholesterol biosynthesis by conditional inactivation of the rate-limiting enzyme Nsdhl or treatment with cholesterol-lowering statins switches glandular pancreatic carcinomas to a basal (mesenchymal) phenotype in mouse models driven by KrasG12D expression and homozygous Trp53 loss. Consistently, PDACs in patients receiving statins show enhanced mesenchymal features. Mechanistically, statins and NSDHL loss induce SREBP1 activation, which promotes the expression of Tgfb1, enabling epithelial-mesenchymal transition. Evidence from patient samples in this study suggests that activation of transforming growth factor ß signaling and epithelial-mesenchymal transition by cholesterol-lowering statins may promote the basal type of PDAC, conferring poor outcomes in patients.


Subject(s)
Biosynthetic Pathways/genetics , Carcinoma, Pancreatic Ductal/genetics , Cholesterol, LDL/biosynthesis , Pancreatic Neoplasms/genetics , Transforming Growth Factor beta/genetics , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Atorvastatin/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Kaplan-Meier Estimate , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor Assays/methods
3.
Cell Signal ; 27(6): 1225-36, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25748048

ABSTRACT

Direct interaction of α9ß1 integrin with nerve growth factor (NGF) has been previously reported to induce pro-proliferative and pro-survival activities of non-neuronal cells. We investigated participation of p75(NTR) in α9ß1 integrin-dependent cellular response to NGF stimulation. Using selective transfection of glioma cell lines with these receptors, we showed a strong, cation-independent association of α9 integrin subunit with p75(NTR) on the cellular membrane by selective immunoprecipitation experiments. The presence of the α9/p75(NTR) complex increases NGF-dependent cell adhesion, proliferation and migration. Other integrin subunits including ß1 were not found in complex with p75(NTR). FRET analysis indicated that p75(NTR) and α9 integrin subunit are not closely associated through their cytoplasmic domains, most probably because of the molecular interference with other cytoplasmic proteins such as paxillin. Interaction of α9ß1 integrin with another ligand, VCAM-1 was not modulated by the p75(NTR). α9/p75(NTR) complex elevated NGF-dependent activation of MAPK Erk1/2 arty for integrin that may create active complexes with other types of receptors belonging to the TNF superfamily.


Subject(s)
Cell Proliferation/drug effects , Integrins/metabolism , Nerve Growth Factor/pharmacology , Nerve Tissue Proteins/metabolism , Receptors, Nerve Growth Factor/metabolism , Animals , Cell Adhesion/drug effects , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Immunohistochemistry , Integrins/chemistry , Integrins/genetics , Mice , Microscopy, Confocal , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nerve Growth Factor/isolation & purification , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Paxillin/metabolism , Protein Binding , Receptor, trkA/metabolism , Receptors, Nerve Growth Factor/chemistry , Receptors, Nerve Growth Factor/genetics , Vascular Cell Adhesion Molecule-1/metabolism
4.
Biochim Biophys Acta ; 1850(6): 1169-79, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25665484

ABSTRACT

BACKGROUND: Cysteine-rich secretory protein (CRISP) is present in majority of vertebrate including human. The physiological role of this protein is not characterized. We report that a CRISP isolated from Echis carinatus sochureki venom (ES-CRISP) inhibits angiogenesis. METHODS: The anti-angiogenic activity of purified ES-CRISP from snake venom was investigated in vitro using endothelial cells assays such as proliferation, migration and tube formation in Matrigel, as well as in vivo in quail embryonic CAM system. The modulatory effect of ES-CRISP on the expression of major angiogenesis factors and activation of angiogenesis pathways was tested by qRT-PCR and Western blot. RESULTS: The amino acid sequence of ES-CRISP was found highly similar to other members of this snake venom protein family, and shares over 50% identity with human CRISP-3. ES-CRISP supported adhesion to endothelial cells, although it was also internalized into the cytoplasm in a granule-like manner. It blocked EC proliferation, migration and tube formation in Matrigel. In the embryonic quail CAM system, ES-CRISP abolished neovascularization process induced by exogenous growth factors (bFGF, vpVEGF) and by developing gliomas. CRISP modulates the expression of several factors at the mRNA level, which were characterized as regulators of angiogenesis and blocked activation of MAPK Erk1/2 induced by VEGF. CONCLUSIONS: ES-CRISP was characterized as a negative regulator of the angiogenesis, by direct interaction with endothelial cells. GENERAL SIGNIFICANCE: The presented work may lead to the development of novel angiostatic therapy, as well as contribute to the identification of the physiological relevance of this functionally uncharacterized protein.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Chorioallantoic Membrane/blood supply , Endothelial Cells/drug effects , Glioma/blood supply , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Pathologic , Neovascularization, Physiologic/drug effects , Viper Venoms/pharmacology , Amino Acid Sequence , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/isolation & purification , Angiogenesis Inhibitors/metabolism , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Glioma/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Molecular Sequence Data , Protein Conformation , Quail , Signal Transduction/drug effects , Viper Venoms/chemistry , Viper Venoms/isolation & purification , Viper Venoms/metabolism
5.
Biomaterials ; 35(10): 3252-62, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24439414

ABSTRACT

Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and ß1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ∼5 µg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS.


Subject(s)
Embryonic Stem Cells/cytology , Lung/cytology , Stem Cell Transplantation , Animals , Blotting, Western , Cell Adhesion , Cell Line , Culture Media, Conditioned , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix Proteins/metabolism , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...