Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1623: 461199, 2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32505288

ABSTRACT

This is the first of a two-part study in which we explore the concept of batch chromatography with recycle lag, concluding with the design, construction, and experimental validation of a prototype that embodies the physical realization of this concept. Moreover, the apparatus is simple to set up in particular in view of large-scale applications. Here the theory behind batch chromatography with recycle lag is revisited and extended, with emphasis on the mathematical formulation and procedure for deriving the single-column batch analogue of any variant of multicolumn simulated countercurrent chromatography. By resorting to selected examples, namely GE Healthcare Bio-science's three-column periodic countercurrent chromatography, Novasep's sequential multicolumn chromatography, and a few hypothetical multicolumn processes, we discuss how the theory can be operationalized. Finally, we conclude by describing the design of a device or apparatus-an eluate recycling device (ERD)-to physically realize the proposed concept. The ERD implements an approximate "first in, first out" method for organizing and manipulating the to-be-recycled fractions of eluate collected from the chromatography column, where the oldest (first) amount fluid, or 'head' of the fraction, is the first to exit and be recycled to the column.


Subject(s)
Countercurrent Distribution/instrumentation , Recycling , Equipment Design
2.
J Chromatogr A ; 1623: 461211, 2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32505295

ABSTRACT

This is the second of a two-part study in which we explore the concept of batch chromatography with recycle lag, concluding with the design, construction, and experimental validation of a prototype-an eluate recycling device (ERD)-that embodies the physical realization of this concept. The ERD implements an approximate "first in, first out" method of organizing and manipulating the to-be-recycled fractions of eluate collected from the chromatography column, where the oldest (first) amount fluid, or 'head' of the fraction, is the first to exit and be recycled back to the column. Moreover, the apparatus is simple to set up in particular in view of large-scale applications. Here we detail the construction of the ERD and assembly of a setup to interconnect the ERD and a chromatography column. Through the coordinated operation of two-way valves and two-position six-port switching valves it is possible to implement a diverse set of configurations or operating modes interconnecting the chromatography column and the ERD. The setup is validated experimentally with success using the separation of a nucleoside mixture by reversed phase chromatography as a model problem. It is also shown that by redesigning the fluid distributor using 3D printing technology the ERD performance can be improved.


Subject(s)
Chromatography, Reverse-Phase/methods , Recycling , Computer Simulation , Hydrodynamics , Nucleosides/analysis , Printing, Three-Dimensional , Reproducibility of Results , Rhodamines/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...