Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mov Sci ; 94: 103184, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330628

ABSTRACT

Postural stability is essential for performing daily activities and preventing falls, whereby suspensory strategy with knee flexion may play a role in postural control. However, the contribution of the suspensory strategy for postural control during sudden lateral perturbation remains unclear. We aimed to determine how suspensory strategy contributed to postural adjustment during sudden perturbation in the lateral direction and what knee flexion setting maximized its effect. Eighteen healthy young adults (10 male and 8 female) participated in this study. Kinematic data during lateral perturbation at three velocities (7, 15, and 20 cm/s) were collected under three knee flexion angle conditions (0°, 15°, and 65°) using motion capture technology. Postural adjustments to the external perturbation were assessed by four parameters related to the temporal aspects of the center of mass (COM): reaction time, peak displacement/time and reversal time, and minimum value of the margin of stability (minimum-MOS). Our results showed that the COM height before the perturbation significantly lowered with increasing knee flexion angle. The COM reaction times for low and mid perturbation velocities were delayed at 65° of knee flexion compared to 0° and 15°, and the COM reversal times were significantly shorter at 65° of knee flexion than at 0° and 15° across all perturbation velocities. The minimum-MOS at the high-velocity of perturbation was significantly smaller at 65° of knee flexion than at 0° and 15°. In conclusion, the adoption of a suspensory strategy with slight knee flexion induced enhanced stability during sudden external and lateral perturbations. However, excessive knee flexion induced instability.


Subject(s)
Postural Balance , Young Adult , Humans , Male , Female , Reaction Time , Biomechanical Phenomena
2.
Front Neurol ; 14: 1290986, 2023.
Article in English | MEDLINE | ID: mdl-38020661

ABSTRACT

Background and aim: The suspensory strategy, a method for controlling postural balance in the vertical direction of the center of mass (COM), is considered by the elderly as a means of balance control. The vertical COM control might alter the sensory integration and regularity of postural sway, which in turn impacts balance. However, to date, this was not confirmed. Thus, this study aimed at investigating the influence of the suspensory strategy achieved through knee flexion on the static standing balance. Methods: Nineteen participants were monitored at knee flexion angles of 0°, 15°, and 65°. Time-frequency analysis and sample entropy were employed to analyze the COM data. Time-frequency analysis was utilized to assess the energy content across various frequency bands and corresponding percentage of energy within each frequency band. The outcomes of time-frequency are hypothesized to reflect the balance-related sensory input and sensory weights. Sample entropy was applied to evaluate the regularity of the COM displacement patterns. Results: Knee flexion led to a decreased COM height. The highest energy content was observed at 65° knee flexion, in contrast with the lowest energy observed at 0° in both the anterior-posterior (AP) and medial-lateral (ML) directions. Additionally, the ultra-low-frequency band was more pronounced at 65° than that at 0° or 15° in the ML direction. Furthermore, the COM amplitudes were notably higher at 65° than those at 0° and 15° in the AP and ML directions, respectively. The sample entropy values were lower at 65° and 15° than those at 0° in the ML direction, with the lowest value observed at 65° in the vertical direction. Conclusion: The suspensory strategy could enhance the sensory input and cause sensory reweighting, culminating in a more regular balance control. Such suspensory strategy-induced postural control modifications may potentially provide balance benefits for people with declining balance-related sensory, central processing, and musculoskeletal system functions.

3.
Motor Control ; 27(3): 465-479, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36599354

ABSTRACT

It is well-known that multitasking impairs the performance of one or both of the concomitant ongoing tasks. Previous studies have mainly focused on how a secondary task can compromise visual or auditory information processing. However, despite dual tasking being critical to motor performance, the effects of dual-task performance on proprioceptive information processing have not been studied yet. The purpose of the present study was, therefore, to investigate whether sensorimotor task performance would be affected by the dual task and if so, in which phase of the sensorimotor task performance would this negative effect occur. The kinematic variables of passive and active knee movements elicited by the leg drop test were analyzed. Thirteen young adults participated in the study. The dual task consisted of performing serial subtractions. The results showed that the dual task increased both the reaction time to counteract passive knee-joint movements in the leg drop test and the threshold to detect those movements. The dual task did not affect the speed and time during the active knee movement and the absolute angle error between the final and the target knee angles. Furthermore, the results showed that the time to complete the sensorimotor task was prolonged in dual tasking. Our findings suggest that dual tasking reduces motor performance due to slowing down proprioceptive information processing without affecting movement execution.


Subject(s)
Cognition , Proprioception , Young Adult , Humans , Reaction Time , Task Performance and Analysis , Movement , Psychomotor Performance
SELECTION OF CITATIONS
SEARCH DETAIL
...